Maths 121 Syllabus

13. Textbook(s):

James Stewart, Calculus, Early Transcendentals, 2020, 9th Edition, Brooks/Cole Cengage Learning,
14. References:

Thomas Calculus, by Thomas, Weir and Hass, $12^{\text {th }}$ Edition (Pearson) Calculus, by Smith and Minton. $4^{\text {th }}$ edition (McGraw-Hill)
15. Other resources used (e.g. e-Learning, field visits, periodicals, software, etc.):

- Paul's Online Math. Notes : http://tutorial.math.lamar.edu
- Salman Khan Academy: http://www.khanacademy.org/math/calculus/differential-calculus/

16. Course description (from the catalog):

Algebra. Functions and graphs. Trigonometry. Conic sections. Limits and continuity. Derivatives and integrals . Applications of derivatives which include Mean-Value Theorem, extrema of functions and optimization. Definite integrals and the Fundamental Theorem of Calculus. Derivatives and integrals of exponential, logarithmic and inverse trigonometric functions

17. Course Intended Learning Outcomes (CILOs):

Students who successfully complete this course should be able to:

	Mapping to PILOs										
CILOs	a	b	c	d	e	f	g	h	i	j	k
1. Evaluate limits of functions both geometrically and algebraically.	\checkmark								\checkmark	\checkmark	
2. Examine continuity of various types of functions at a point or on a set.									\checkmark	\checkmark	
3. Find derivatives of explicit and implicit functions.	\checkmark								\checkmark		
4. Evaluate definite and indefinite integrals.	\checkmark								\checkmark	\checkmark	
5. Employ differentiation to describe the behavior of functions.	\checkmark								\checkmark		

6. Apply derivatives to solve real life problems such as optimization and related rates.	J								J		

18. Course assessment:				
Assessment Type	CILOs coverage	Number	Weight	Date
Online Quizzes	-	-		
Tests	$1-6$	2	40%	Test 1 27/3 11:00-12:00 Test 2 8/5 11:00-12:00
Laboratory/Practical	-	-		
Assignments/Online Homework	$1-6$	22	20%	Throughout the semester
Projects/Case Studies	-	-		
Final	$1-6$	1	-	$1 / 6 / 2111: 30-13: 30$
Total			100%	

19.Attendance Policy:

Extracts from the University Bulletin regarding withdrawal and enforced withdrawal:
A student's absence from lectures or classes in excess of 25% of the total assigned session will result in an automatics withdrawal of the student from the course, regardless of the causes for his/her absence.
a) A grade of (W) is given to a student who misses 25% or more of the total sessions assigned to the course if he/she presents a valid excuse for his/her absence.
b) A grade of (WF) is given to a student who misses 25% or more, but with no valid excuse.

20.Academic Honesty and Plagiarism:

All students are expected to follow the specific rules of academic honesty and plagiarism as per The Regulation of Professional conduct Violations for University of Bahrain Students, decision \# 4/2006. Please refer the UoB website-Deanship of Students Affairs-Guidance Office.

21.Course Weekly Breakdown:

Week	Date	Topics covered	CILOs	Teaching Method	Assessment
1	7/2/21	1.1 Four Ways to represent a function 1.3 New functions from old functions 1.4 Exponential functions 1.5 Inverse functions and logarithms	1	Lecture \& Problem solving	HW 1,Test 1 \& Final Exam
2	14/2/21	2.2 The limit of a function 2.3 Limit rules	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Lecture \& Problem solving	HW 1, HW 2, Test 1 \& Final Exam
3	21/2/21	2.5 Continuity	2	Lecture \& Problem solving	HW 3, HW4, Test 1 \& Final Exam
4	28/2/21	2.6 Limits at infinity 2.8 The derivative as a function	$\begin{gathered} \hline 1 \\ 1,3 \end{gathered}$	Lecture \& Problem solving	HW 4, HW 5, Test 1 \& Final Exam
5	7/3/21	3.1 Derivative of Polynomials and Exponential functions 3.2 Differentiation rules	$\begin{aligned} & \hline 3 \\ & 3 \end{aligned}$	Lecture \& Problem solving	HW 6, HW 7, Test 1 \& Final Exam
6	14/3/21	3.3 Derivative of trigonometric functions 3.4 Chain Rule	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	Lecture \& Problem solving	HW 8, Test 1 \& Final Exam
7	21/3/21	3.5 Implicit Differentiation	3	Lecture \& Problem solving	HW 9, HW 10, Test 1 \& Final Exam
8	28/3/21	3.6 Logarithmic Differentiation	3	Lecture \& Problem solving	HW 11, Test 2 \& Final HW 12, Test 2 \& Final
9	4/4/21	Midsemester break			
10	11/4/21	3.9 Related Rates	3,6	Lecture \& Problem solving	HW 13,HW 14 , Test 2 \& Final Exam
11	18/4/21	3.10 Linearization and differentials 3.11 Hyperbolic functions 4.1 Maximum and Minimum	$\begin{gathered} 3,6 \\ 3 \\ 3 \end{gathered}$	Lecture \& Problem solving	HW 15, HW16, Test 2 \& Final Exam
12	25/4/21	4.1 Maximum and Minimum 4.2 The mean value theorem 4.3 The shape of a graph	$\begin{aligned} & \hline 3 \\ & 3 \\ & 3 \end{aligned}$	Lecture \& Problem solving	HW 17, HW 18, Test 2 \& Final Exam
13	2/5/21	4.3 The shape of a graph 4.7 Optimization problems	$\begin{gathered} \hline 3 \\ 3,6 \end{gathered}$	Lecture \& Problem solving	HW 19, HW 20 \& Final Exam
14	9/5/21	4.7 Optimization problems 4.9 Antiderivative	$\begin{gathered} 3,6 \\ 4 \end{gathered}$	Lecture \& Problem solving	HW 21, HW 22 \& Final Exam
15	16/5/21	4.9 Antiderivative 5.2 The definite integral 5.3 The fundamental theorem of Calculus 5.4 Indefinite integral	$\begin{gathered} 4 \\ 4 \\ 3,4 \\ 4 \end{gathered}$	Lecture \& Problem solving	Final Exam

Weekly Problems \& Important Dates

Week	Date	Topics covered	Examples	Problems	Important Dates
1	7/2/21	1.1 Four Ways to represent a function 1.3 New functions from old functions 1.4 Exponential functions 1.5 Inverse functions and logarithms	$\begin{gathered} \hline 1,2,3,6-9,11 \\ 6-9 \\ 5 \\ 1-4,6-10,13 \end{gathered}$	$\begin{gathered} \hline 1-4,7-18,33-46,48 \\ 33-58,68-71 \\ 1-4,9-14,21 \\ 1-20,23-30,37-46,57-60,69- \\ 74 \end{gathered}$	
2	14/2/21	2.2 The limit of a function 2.3 Limit rules	$\begin{gathered} \hline 1-6 \\ 1-11 \end{gathered}$	$\begin{gathered} \hline 4-9,29-40 \\ 1-34,39-48,51(\mathrm{a}, \mathrm{~b}), 52(\mathrm{a}, \mathrm{~b}), \\ 53-57 \end{gathered}$	
3	21/2/21	2.5 Continuity	1-9	3-5, 13-24, 27-38, 47-49	
4	28/2/21	2.6 Limits at infinity 2.8 The derivative as a function	$\begin{gathered} 1-11 \\ 1-7 \end{gathered}$	$\begin{gathered} 3,4,13-42 \\ 3-11,21-32,57,63 \end{gathered}$	
5	7/3/21	3.1 Derivative of Polynomials and Exponential functions 3.2 Differentiation rules	$\begin{aligned} & 1-9 \\ & 1-5 \\ & \hline \end{aligned}$	$\begin{gathered} 1,3-42,45,49-50,53,54(\mathrm{a}, \mathrm{~b}), \\ 59-63,65,68,74-76 \\ 1-38,43-50 \\ \hline \end{gathered}$	
6	14/3/21	3.3 Derivative of trigonometric functions 3.4 Chain Rule	$\begin{aligned} & \hline 1-7 \\ & 1-10 \\ & \hline \end{aligned}$	$\begin{gathered} 1-30,31(a), 32(a), 33(a), \\ 34(a), 35-40,45-62 \\ 1-60,61(a), 65-70,74-78 \end{gathered}$	
7	21/3/21	3.5 Implicit Differentiation	1-4	1-36, 39-44	
8	28/3/21	3.6 Logarithmic Differentiation	1-10	2-40, 43-78	
9	4/4/21	Midsemester break			
10	11/4/21	3.9 Related Rates	1-5	$\begin{gathered} 3-12,13-16,17-19,22,33,35 \\ 47,49,50 \end{gathered}$	
11	18/4/21	3.10 Linearization and differentials 3.11 Hyperbolic functions 4.1 Maximum and Minimum	$\begin{gathered} \hline 1 \\ 1-2 \\ 1-8 \\ \hline \end{gathered}$	$\begin{gathered} 1-4,11-18,31-36 \\ 1-14,35-46 \\ 29-48,51-66 \end{gathered}$	
12	25/4/21	4.1 Maximum and Minimum 4.2 The mean value theorem 4.3 The shape of a graph	$\begin{array}{r} 1-8 \\ 3,5 \\ 1-3,5-7 \end{array}$	$29-48,51-66$ $15-18,21,29-31$ $9-41,45-55$	Labor day 1/5
13	2/5/21	4.3 The shape of a graph 4.7 Optimization problems	$\begin{gathered} \hline 1-3,5-7 \\ 1-3,5 \end{gathered}$	$\begin{gathered} 9-41,45-55 \\ 2-8,13-21,25-27,29-32,37, \\ 40,41-44,60-63 \\ \hline \end{gathered}$	
14	9/5/21	4.7 Optimization problems 4.9 Antiderivative	$\begin{aligned} & \hline 1-3,5 \\ & 1-4,6 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2-8,13-21,25-27,29-32,37, \\ 40,41-44,60-63 \\ 1-24,29-54,65-70 \\ \hline \end{gathered}$	Eid 12/5-16/5
15	16/5/21	4.9 Antiderivative 5.2 The definite integral 5.3 The fundamental theorem of Calculus 5.4 Indefinite integral	$\begin{gathered} \hline 1-4,6 \\ 8 \\ 1-9 \\ \\ 1-5 \\ \hline \end{gathered}$	$\begin{gathered} 1-24,29-54,65-70 \\ 35-36,58,59 \\ 9-54 \\ 5-24,27-54 \\ \hline \end{gathered}$	

