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Abstract. Let E be an elliptic curve defined over Q which has good ordinary
reduction at the prime p. Let K be a number field with at least one complex

prime which we assume to be totally imaginary if p = 2. We prove several

equivalent criteria for the validity of the MH(G)-property for Zp-extensions
other than the cyclotomic extension inside a fixed Z2

p-extension K∞/K. The

equivalent conditions involve the growth of µ-invariants of the Selmer groups

over intermediate shifted Zp-extensions in K∞, and the boundedness of λ-
invariants as one runs over Zp-extensions of K inside of K∞.

Using these criteria we also derive several applications. For example, we can

bound the number of Zp-extensions of K inside K∞ over which the Mordell-
Weil rank of E is not bounded, thereby proving special cases of a conjecture of

Mazur. Moreover, we show that the validity of the MH(G)-property sometimes

can be shifted to a larger base field K′.

Dedicated to the memory of John H. Coates

1. Introduction

Let p be a rational prime, and let E be an elliptic curve defined over Q with good
ordinary reduction at p. Let K be a number field with at least one complex prime
which we assume to be totally imaginary if p = 2. Denote by K∞ a Z2

p-extension
of K. In this paper we study a property of the Selmer group of E over K∞ with
respect to varying Zp-subextensions. In order to be more precise, we introduce
some notation.

Let S be a finite set of nonarchimedean primes of K containing all the primes
dividing p and all the primes where E has bad reduction. We let KS be the
maximal extension of K unramified outside S. Suppose now that L is a field
with K ⊆ L ⊆ KS . We let GS(L) = Gal(KS/L) and for v ∈ S we define
Jv(E/L) = lim−→

⊕
w|vH

1(Fw, E)[p∞] where the direct limit runs over finite exten-

sions F of K contained in L (see [9]). We define the p∞-Selmer group of E/L
as

0 −→ Selp∞(E/L) −→ H1(GS(L), E[p∞]) −→
⊕
v∈S

Jv(E/L).

Let G := Gal(K∞/K). We denote the Iwasawa algebra Λ(G) = Zp[[G]] by Λ2. If
σ and τ are topological generators of G, then Λ2

∼= Zp[[T,U ]] via the map sending
σ − 1 to U and τ − 1 to T .

Consider the set P1(Zp) = {(a, b) ∈ Z2
p | p does not divide both a and b}/ ∼

where (a1, b1) ∼ (a2, b2) if there exists t ∈ Z×p with a1 = ta2 and b1 = tb2. Then the
Zp-extensions of K which are contained in K∞ are in bijection with the elements
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of P1(Zp): every element [(a, b)] ∈ P1(Zp) maps to the Zp-extension being the fixed
field of K∞ of the closed subgroup generated by σaτ b.

Let E be the set of all Zp-extensions of K. Greenberg [18] introduced the fol-
lowing topology on E (which we call Greenberg’s topology). For L ∈ E and n a
positive integer we define E(L, n) := {L′ ∈ E | [L′ ∩ L : K] ≥ pn}. This means
E(L, n) consists of all Zp-extensions of K which coincide with L at least up to level
n. Taking E(L, n) as a base of neighborhoods of L gives us a topology on E . Now
let E⊆K∞(K) be the subset of E which contains the Zp-extensions of K that are
contained in the fixed Z2

p-extension K∞ of K. With the above topology the bijec-

tion P1(Zp)↔ E⊆K∞(K) becomes a homeomorphism. Indeed, if two Zp-extensions
L,L′ ∈ E⊆K∞(K) of K correspond to [(a, b)], [(a′, b′)] ∈ P1(Zp), respectively, then
L′ ∈ E(L, n) if and only if a ≡ a′ (mod pn) and b ≡ b′ (mod pn). This means that
the above bijection maps the open sets of P1(Zp) to the open sets of E⊆K∞(K).

We let X(E/K∞) be the Pontryagin dual of Selp∞(E/K∞). Also if
L ∈ E⊆K∞(K), then we let X(E/L) be the Pontryagin dual of Selp∞(E/L), and we
denote the Iwasawa algebra Zp[[Gal(L/K)]] by ΛGal(L/K) or when it is clear from
context simply by Λ.

For any subgroupH ofG we denote its fixed field byKH
∞. We now define a certain

subset H of subgroups H of G. In view of the bijection P1(Zp)↔ E⊆K∞(K), H
will correspond to a subset of Zp-extensions of K which have certain properties.

Definition 1.1. Let H be the subset of all subgroups H = 〈σaτ b〉
of G = Gal(K∞/K) which are topologically generated by σaτ b for some
[(a, b)] ∈ P1(Zp) such that

(a) No prime in S splits completely in KH
∞/K,

(b) Every prime of K above p ramifies in KH
∞/K,

(c) X(E/KH
∞) is a torsion ΛG/H -module.

In all that follows we will always assume that H is not empty. We shall show

that in this case 〈σaτ b〉 ∈ H for all but finitely many [(a, b)] ∈ P1(Zp) (Proposition
2.5). Moreover, if K∞ contains the cyclotomic Zp-extension Kcyc of K and K/Q
is an abelian extension, then Hcyc := Gal(K∞/Kcyc) ∈ H (Proposition 2.6), i.e. in
this case H will be automatically non-empty.

ForH ∈ H we defineHn := Hpn . For every n, we fix a finite extensionKH,n/K of
degree pn such that KHn

∞ = KH,nK
H
∞. Then KHn

∞ /KH,n is a Zp-extension. We will
sometimes abbreviate KHn

∞ to Fn and write F0 = F in this article. We summarize
all these subfields and the corresponding Galois groups in the field diagram given
in Figure 1. The Galois groups Gal(F/K) ∼= Gal(Fn/KH,n) are isomorphic to Zp
and are abbreviated to Γ in this diagram.

We define ΛH,KH,n
:= Zp[[Gal(KHn

∞ /KH,n)]]. For every n, we let GH,n =

Gal(K∞/KH,n) and we write µGH,n/Hn
(X(E/KHn

∞ )) for the µ-invariant of

X(E/KHn
∞ ) as a ΛH,KH,n

-module. When we are working with a fixed H ∈ H, then,
to ease notation, we will sometimes drop the subscript H from all the symbols in
this paragraph.

We define X(E/K∞)f := X(E/K∞)/X(E/K∞)[p∞] (this group was denoted
Y (E/K∞) in [10]). We similarly define X(E/KHn

∞ )f for any H ∈ H and any
n ≥ 0. For any H ∈ H one may ask whether X(E/K∞)f is finitely generated over
Λ(H) := Zp[[H]].
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Figure 1. Overview of the intermediate fields and Galois groups

K∞

Gn=GH,n
Hn

H=〈σaτb〉
KHn
∞ = FnΓ

Kn = KH,n

KH
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Definition 1.2. For H ∈ H we say that X(E/K∞) satisfies the MH(G)-property
if X(E/K∞)f is finitely generated over Λ(H).

For H = Hcyc this is conjectured to be true if p is odd (see [10]) and is known
as the MH(G)-conjecture. For instance, this conjecture holds true if X(E/Kcyc)
is Zp[[T ]]-torsion and has µ-invariant zero. In this case it is known that there
exists a Greenberg neighborhood U of Kcyc such that the Selmer group is cotorsion
with µ-invariant zero for each L ∈ U . It is natural to ask whether a similar fact is
true for the MH(G)-property, i.e. whether the following question can be answered
affirmatively: Given that the MH(G)-property is satisfied for some H ∈ H, can one
find a neighborhood U of KH

∞ such that the MH(G)-property is satisfied for each
Zp-extension in U? We will prove that this is indeed the case. The major ingredient
of our argument is a new criterion for the validity of the MH(G)-property, which
is part of our first main result.

Suppose that X(E/K∞) is a torsion ΛGal(K∞/K)-module, and let f∞ be the
characteristic power series of X(E/K∞). If f∞ 6= 0, write f∞ = pmg∞ where
m = µG(X(E/K∞)) so that p - g∞. When f∞ = 0, we set g∞ = 0. If H ∈ H, we
let λH be the lambda-invariant of X(E/KH

∞). The first main result of this article
is the following

Theorem 1.3. Let H be as in Definition 1.1, and suppose that H is not empty.

Then X(E/K∞) is Λ2-torsion, and for any H = 〈σaτ b〉 ∈ H the following are
equivalent:

(a) X(E/K∞)f is finitely generated over Λ(H).
(b) µG(X(E/K∞)) = µG/H(X(E/KH

∞)).

(c) For all n, X(E/KHn
∞ ) is a torsion ΛH,KH,n

-module and

pnµG(X(E/K∞)) = µGn/Hn
(X(E/KHn

∞ )).
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(d) Either g∞ = 0, or g∞ 6= 0 and the image of g∞ in Λ2/pΛ2 is not divisible by
the coset of (1 + U)a(1 + T )b − 1 (here U = σ − 1 and T = τ − 1).

(e) λ(X(E/L)) is bounded as L varies through the elements in a neighborhood of
KH
∞.

If E(K∞)[p∞] is finite, the above are equivalent to

(f) We have an injective Λ(H)-homomorphism

X(E/K∞)f ↪→ Λ(H)λH

with finite cokernel and a Λ2-exact sequence

0→ A→ X(E/K∞)→
s⊕
i=1

Λ2/f
ni
i ⊕

t⊕
j=1

Λ2/p
mj → B → 0

where s ≤ λH , A and B are pseudo-null Λ2-modules with A annihilated by some
power of p, fi ∈ Λ2 \ Λ(H) are irreducible power series and µG(X(E/K∞)) =∑t
j=1mt.

If E(K)[p] = 0, then X(E/K∞) has no nontrivial pseudo-null Λ2-submodules and
so A = 0 in (f).

The equivalences of (a), (b) and (c) above for Hcyc = Gal(K∞/Kcyc) are proven
using methods from [10]. For Hcyc, the single implication (a) ⇒ (b) is also proven
in special cases in [8] and [42]. Our proofs of the equivalences of (a), (b) and (c) for
any H ∈ H will follow similar lines.

The main novelty of our approach is that it relates statements (d), (e) and (f) to
the MH(G)-property. As far as we know this has not been realised in the literature
before. We will be able to derive several interesting consequences for the MH(G)-
property by using these conditions. For example, it is clear from (e) that the validity
of the MH(G)-property for some H ∈ H, automatically guarantees the validity of
the MH(G)-property for each Zp-extension of K which is contained in some small
neighborhood of KH

∞.
Moreover, as an easy consequence of part (d) above, we will show the following

result which provides strong heuristic evidence in favor of the MH(G)-conjecture.

Proposition 1.4. Assume as before that H is not empty. For all but finitely many
H ∈ H, X(E/K∞)f is a finitely generated Λ(H)-module.

We say a few words on the proof of the conditions (d), (e) and (f) from The-
orem 1.3. The result stated in (f) is similar to Theorem 3.1 in the paper of
Hachimori and Venjakob [25]; the latter was proven in the setup of a Zp o Zp-
extension containing Kcyc under the additional condition that µ(X(E/Kcyc)) = 0,
whereas we make no assumption on the vanishing of the µ-invariant but work in
a Z2

p-extension. The main tools used to prove (a)⇒ (f) are a control theorem

(X(E/K∞)f )Hn → X(E/KHn
∞ )f (see Proposition 4.2) and Theorem 8.1.

The implication (d)⇒ (a) can be shown via purely module-theoretic arguments
(see Proposition 7.1). In order to obtain the reverse implication, we prove an
asymptotic growth formula for the µGn/Hn

(X(E/KHn
∞ )) which is an analog of a

similar formula for class numbers due to Cuoco [12]. Finally, the equivalence of (d)
and (e) is proven using the work of Monsky [47].

The condition in (f) that E(K∞)[p∞] is finite is imposed in order to bound the
order of the maximal finite ΛH,KH,n

- submodule of X(E/KHn
∞ ) as n varies. Such a
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bound is proven using the work of Hachimori and Matsuno [23]. This condition is
mild as we will show in Lemma 3.5.

Remark. If E(K)[p∞] = 0, then E(K∞)[p∞] = 0 since K∞/K is a pro-p-extension
(recall that this condition is used in the last assertion of Theorem 1.3).

A well-known result of Iwasawa (see [28, Theorem 2]) states that the vanishing of
the Iwasawa µ-invariant of the cyclotomic Zp-extension of a number field K implies
that also the µ-invariant of the cyclotomic Zp-extension of any finite p-extension K ′

of K vanishes. In the good ordinary case the analog of this statement for Selmer
groups is shown in [22, Corollary 3.4]. Using the equivalent conditions from our
main result, we can derive a similar result on the shifting of the MH(G)-property
(see Theorem 11.9 in Section 11). In particular, this result can be used in order to
deduce from the validity of the MH(G)-conjecture for K the validity of the MH(G)-
conjecture for the larger base field K ′. The shifting of the MH(G)-property seems
to be a very hard problem. We were able to prove its shifting invariance only under
certain additional assumptions (see Theorem 11.9 for the details). We describe
a natural setting where some of the additional hypothesis hold at the end of the
paper.

Now we describe further applications of our main results. We now specialise to
an imaginary quadratic base field K, i.e. the Z2

p-extension K∞ of K is now just the
composite of all Zp-extensions of K. It contains the cyclotomic Zp-extension Kcyc

of K, and also the anticyclotomic Zp-extension Kac. We mention an application
of Theorem 1.3 to the number of L ∈ E = E⊆K∞(K) where the rank of E stays
bounded. As a first observation, it follows from Proposition 2.3 and Lemma 9.1
that the rank of E stays bounded in all but finitely many Zp-extensions L ∈ E . The
precise number of Zp-extensions where the rank of E stays bounded is predicted by
Mazur’s growth number conjecture ([45, section 18]).

Conjecture (Mazur). The Mordell-Weil rank of E stays bounded along any Zp-
extension of the imaginary quadratic field K, unless the extension is anticyclotomic
and the root number of E/K is −1.

It seems striking to us that the MH(G)-property has relations to Mazur’s con-
jecture. Let Σ be the set of all H ∈ H such that X(E/K∞)f is a finitely generated
Λ(H)-module. In relation to Mazur’s conjecture, using a slightly weaker version of
Theorem 1.3(f) and a technique of Bloom and Gerth [4], we will show

Theorem 1.5. Let t be the number of Zp-extensions of an imaginary quadratic
field K, where the rank of E does not stay bounded. Then t ≤ min{λH |H ∈ Σ}.

In particular, if λH = 0 for any H ∈ Σ (respectively, λH = 1 if the root number
of the L-function is −1), then Mazur’s Conjecture holds true. We provide expli-
cit examples in Section 9 where this happens, thus deriving sufficient criteria for
the validity of Mazur’s Conjecture, and we illustrate our results with numerical
examples.

We now recall the following conjecture of Greenberg (see [19, Conjecture 1.11])

Conjecture (Greenberg). Let E be an elliptic curve which is defined over Q. If
Selp(E/Qcyc) is Λ-cotorsion, then there exists a Q-isogenous elliptic curve E′ such
that Selp(E

′/Qcyc) has µ-invariant zero.
In particular, if E[p] is an irreducible Gal(Q(E[p])/Q)-module, then

Selp(E/Qcyc) has µ-invariant zero.
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Let us mention one final application. As mentioned above, when p is odd, it is
conjectured that X(E/K∞)f is finitely generated over Λ(Hcyc). Assuming this, we
use our main theorem and a result of Pollack and Weston [50] on the vanishing of
the µ-invariant of X(E/Kac) to prove a result (see Theorem 10.8), which establishes
an interesting connection between the MH(G)-conjecture and the above conjecture
of Greenberg.

This article consists of 11 sections, including this introduction. Sections 2-8
are devoted to the proofs of the equivalent conditions in our main theorem (in
particular, we derive the connection to the boundedness of λ-invariants through
analogues of results of Cuoco and Monsky in Sections 6 and 7). In Section 9
and Section 10 we prove the applications concerning the conjectures of Mazur and
Greenberg. The final section is devoted to a study of the shifting invariance of the
MH(G)-property.

The MH(G)-conjecture plays a crucial role and in fact is an assumption in the
formulation of the noncommutative main conjecture (see [6], [17] and [57]). John
Coates strongly believed that the MH(G)-conjecture should be true and viewed
the statement as a natural generalization of the celebrated conjecture of Mazur [19,
Conjecture 1.3]. The Akashi series in [8] was developed as a tool towards tackling
the MH(G)-conjecture. The authors therefore dedicate this article to the memory
of John Coates and his contributions to Iwasawa theory.

Acknowledgements. The authors would like to thank Chandrakant Aribam,
Cornelius Greither, Somnath Jha, Chan-Ho Kim, Robert Pollack, Karl Rubin,
Florian Sprung, Oliver Thomas and Jeanine Van Order for helpful discussions.
We thank the anonymous referee for the detailed report which led to considerable
improvements in the exposition.

2. Results on Selp∞(E/L) for L = K∞ and L ∈ E⊆K∞(K)

This section is preliminary in nature and collects several auxiliary results, the
most important of which is our control theorem (Proposition 2.8) which works for
non-cyclotomic Zp-extensions.

Let K be as in Theorem 1.3. The following well-known result is easy to prove:

Lemma 2.1. Let R be a Noetherian UFD of dimension at least two. Let
W =

⊕t
i=1R/p

ni
i where, for all i, pi is a prime ideal of height one. Then W

has no nontrivial pseudo-null R-submodules.

Proof. Assume that M is a pseudo-null submodule of W . Then, by the very defin-
ition of what it means to be pseudo-null, we have that Mp = 0 for all prime ideals
p of R of height less than or equal to one. We now show that for any prime ideal p
of R of height one and any n > 0 the natural map ψ : R/pn → S−1(R/pn) where
S = R \ p is an injection. Applying this to the prime ideals pi appearing in the
decomposition of W shows that we must have M = 0.

To show the claim, assume that for some x ∈ R we have ψ(x + pn) = 0. Then
for some s ∈ S we have sx ∈ pn. Since R is a UFD, therefore p = 〈y〉 for some
y ∈ R (see [43, Theorem 20.1]). The element y is necessarily an irreducible(=prime)
element of R. So yn | sx. Since y - s and R is a UFD, therefore yn | x which shows
that x ∈ pn. �
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Recall that there exists a bijection P1(Zp)↔ E⊆K∞(K), i.e. each element
[(a, b)] ∈ P1(Zp) uniquely determines a Zp-extension of K inside K∞, via the sub-
group H of Gal(K∞/K) fixing it. We need the following

Lemma 2.2. Let [(a, b)] ∈ P1(Zp) and let H = 〈σaτ b〉 and Υ = (1+U)a(1+T )b−1.
If f∞ 6= 0, then we have that X(E/K∞)H is a torsion Λ2/Υ-module if and only if
f∞ and Υ are relatively prime.

Proof. To simplify notation, we will denote X(E/K∞) by simply X∞. Assume
that f∞ 6= 0. Taking into account Lemmas 2.9 and 2.1, we have by [5, Chapt. VII,
§4.4 Theorem 5], that there exist irreducible power series fj ∈ Zp[[T,U ]], integers
mi, nj and an exact sequence

0→W → X∞ → B → 0,

where W =
⊕s

i=1 Λ2/p
mi ⊕

⊕t
j=1 Λ2/f

nj

j and B is a pseudo-null Λ2-module. From
this exact sequence, we get another exact sequence

BΥ=0 →W/Υ→ X∞/Υ→ B/Υ→ 0. (1)

Since B is a pseudo-null Λ2-module, therefore it has Krull dimension at most one.
So the Λ2/Υ-modules B/Υ and BΥ=0 also have Krull dimension at most one and
hence they are Λ2/Υ-torsion.

Therefore, it follows from the sequence (1) that X∞/Υ and W/Υ have the same
Λ2/Υ-rank. Hence we must show that W/Υ is Λ2/Υ-torsion if and only if f∞ and Υ
are relatively prime. Clearly if D = Λ2/p

mi , then D/Υ is a torsion Λ2/Υ-module.
So we see that W/Υ has positive Λ2/Υ-rank if and only if Λ2/〈f

nj

j ,Υ〉 has positive

Λ2/Υ-rank for some j and this is the case, if and only if, for some j, fj divides Υ
(see [43, Theorem 17.4]). �

In the following, for L ∈ E , we will abbreviate the Iwasawa algebra
Λ(Gal(K∞/L)) to Λ. Recall the definition of H from Definition 1.1.

Proposition 2.3. Suppose that H is not empty. Then X(E/L) is a torsion Λ-
module for all but finitely many L ∈ E⊆K∞(K).

Proof. If L ∈ E⊆K∞(K), consider the map (induced by restriction)

s : Selp∞(E/L)→ Selp∞(E/K∞)Gal(K∞/L).

We have that ker s injects into

H1(Gal(K∞/L), E(K∞)[p∞]) = ker(H1(GS(L), E[p∞])→ H1(GS(K∞), E[p∞])).

Since H1(Gal(K∞/L), E(K∞)[p∞]) is clearly cofinitely generated over Zp, so is
ker s. Therefore by considering the dual of the map s, we see that X(E/L) will be
a torsion Λ-module if this is the case for X(E/K∞)Gal(K∞/L).

If f∞ = 0, then X(E/K∞) is a pseudo-null Λ2-module. Hence it has
Krull dimension at most one. Therefore for any L ∈ E⊆K∞(K), we have that
X(E/K∞)Gal(K∞/L) has Krull dimension at most one and hence is a torsion

Zp[[Gal(K∞/L)]]-module. Therefore in this case for all L ∈ E⊆K∞(K), X(E/L) is
a torsion Λ-module.
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Now assume that f∞ 6= 0. From Lemma 2.2 (and since Λ2 is a UFD), we see
that the desired result follows from the following lemma. �

Lemma 2.4. If [(a, b)] and [(c, d)] are two distinct elements of P1(Zp), then σaτ b−1
and σcτd − 1 are relatively prime elements of Λ(G).

Proof. Let G̃ be the subgroup topologically generated by σaτ b and σcτd. Then
G̃ has finite index in G. Let IG̃ (resp. IG) be the ideal of Λ(G̃) (resp. Λ(G))

generated by σaτ b − 1, σcτd − 1 and p. Since G̃ is topologically generated by σaτ b

and σcτd, therefore IG̃ has finite index in Λ(G̃). As G̃ has finite index in G therefore

Λ(G) is a finitely generated Λ(G̃)-module. These two facts imply that IG has finite
index in Λ(G). By [43, Theorem 17.4], this in turn implies that the sequence
σaτ b − 1, σcτd − 1, p is regular. In particular σaτ b − 1 and σcτd − 1 are relatively
prime. �

The next proposition establishes the result mentioned in the introduction.

Proposition 2.5. Suppose that H is non-empty. Then for all but finitely many
L ∈ E⊆K∞(K) we have

(a) No prime in S splits completely in L/K.
(b) Every prime of K above p ramifies in L/K.
(c) X(E/L) is a torsion Λ-module.

Proof. Let F = KH
∞ with H ∈ H, and let L be given. Suppose v ∈ S splits com-

pletely in L/K. Since v does not split completely in F/K, therefore we see that the
decomposition group Dv for a prime of K∞ over v has Zp-rank one. It follows from
this that v does not split completely for any L′ ∈ E⊆K∞(K) with L′ 6= L. Since
the set S is finite, (a) excludes finitely many L ∈ E⊆K∞(K). Now let p be a prime
of K above p. Since p ramifies in F/K, therefore the inertia group Ip of a prime of
K∞ above p must have Zp-rank greater than or equal to one. It follows from this
that (b) excludes at most finitely many Zp-extensions. Proposition 2.3 shows that
(c) excludes finitely many extensions. Putting all these results together gives the
proposition. �

Proposition 2.6. Suppose that Kcyc is contained in K∞ and K/Q is an abelian
extension. Then Hcyc ∈ H.

Proof. We must show that

(a) No prime in S splits completely in Kcyc/K.
(b) Every prime of K above p ramifies in Kcyc/K.
(c) X(E/Kcyc) is a torsion Λ-module.

(a) and (b) certainly hold. (c) holds from results of Kato [32] and Rohrlich [52]. �

We need the following lemma for the proof of the next proposition.

Lemma 2.7. Let H ∈ H. Then for any n ≥ 0, we have that E(KHn
∞ )[p∞] is finite.

Proof. This follows from [20, Prop. 3.2(ii)]. �

Proposition 2.8. Let H ∈ H. The natural maps (induced by restriction):

sn : Selp∞(E/KHn
∞ )→ Selp∞(E/K∞)Hn

have finite kernel and cokernel and their orders are bounded independently of n.



ON THE MH(G)-PROPERTY 9

Proof. For simplicity, let Fn = KHn
∞ and F = F0. For any n we have a commutative

diagram with vertical maps induced by restriction

0 // Selp∞(E/K∞)Hn // H1(GS(K∞), E[p∞])Hn //
⊕

v∈S Jv(E/K∞)Hn

0 // Selp∞(E/Fn) //

sn

OO

H1(GS(Fn), E[p∞])

gn

OO

θn
//
⊕

v∈S Jv(E/Fn)

hn

OO

By the snake lemma we have an exact sequence

0→ ker sn → ker gn → kerhn ∩ img θn → coker sn → coker gn.

From this exact sequence we see that ker sn (resp. coker sn) will be finite and
bounded independently of n if we show that ker gn (resp. coker gn and kerhn) is
finite and bounded independently of n.

Let Sn be all the primes of Fn above those in S and Sp,n be the primes of Sn
above p. We define the following groups

(i) An := H1(Hn, E(K∞)[p∞]),
(ii) Bn := H2(Hn, E(K∞)[p∞]),
(iii) Cn :=

∏
w∈Sn\Sp,n

H1(Hn,w, E(K∞,w)[p∞]),

(iv) Dn :=
∏
w∈Sp,n

H1(Hn,w, Ẽ(k∞,w)[p∞]).

In (iii) and (iv) we have also written w for a fixed prime of K∞ above w and Hn,w

is the decomposition group. k∞,w is the residue field and Ẽ is the reduction of E
over the residue field.

Since all primes of K above p ramify in F (because H ∈ H), the results of [7]
allow us to write

⊕
v∈S

Jv(E/Fn) =
∏

w∈Sn\Sp,n

H1(Fn,w, E[p∞])×
∏

w∈Sp,n

H1(Fn,w, Ẽ[p∞]).

Here Ẽ denotes the reduction of the elliptic curve over the residue field. We can
similarly do the same for ⊕v∈SJv(E/K∞).

From this and Shapiro’s lemma we can write kerhn = Cn ×Dn. Also, we have
ker gn = An and coker gn injects into Bn. Therefore, we only need to show that the
groups An, Bn, Cn and Dn are all finite and bounded independently of n.

First we deal with An : Let W = E(K∞)[p∞]. If γ is a topological generator of
H, then An = W/(γp

n − 1)W . The kernel of γp
n − 1 acting on W is E(Fn)[p∞].

This is a finite group by Lemma 2.7.
Let Wdiv be the maximal divisible subgroup of W . Since Wdiv has finite

Zp-corank and the kernel of γp
n − 1 acting on W is finite, it follows that

(γp
n − 1)Wdiv = Wdiv. Therefore we see that H1(Hn,W ) has order bounded by

[W : Wdiv]. This takes care of the group An. As for Bn, this group is zero for all n
because cdp(Hn) = 1.

Now we deal with Cn: let w ∈ Sn \ Sp,n, and let v be the prime of S below w.
As primes in S do not split completely in F/K (because H ∈ H), Fn,w/Kv is a
Zp-extension. This together with the fact that Kv has no Z2

p-extension implies that
Hn,w = 0. Therefore Cn = 0 for all n.

Finally we deal with Dn: Let w ∈ Sp,n. Suppose first that the decomposition
group of a prime of K∞ above w is an open subgroup of Gal(K∞/K) so Hn,w is
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isomorphic to Zp. Since primes of K above p ramify in F/K, we see that the Hn,w-

invariants of Ẽ(k∞,w)[p∞] are finite. Therefore, as in the proof for An, we see that

H1(Hn,w, Ẽ(k∞,w)[p∞]) is finite and bounded independently of n. Now let w ∈ Sp,n
be a prime such that the decomposition subgroup of any prime of K∞ above w is
not open in Gal(K∞/K). Since H is non-empty, the decomposition group will
have Zp-rank one. As there are only finitely many primes in Fn above v (because
H ∈ H), w splits completely in the Zp-extension K∞/Fn, and thus Hn,w = 0. �

Lemma 2.9. If H is non-empty, then X(E/K∞) is a torsion Λ2-module.

Proof. Choose some H ∈ H, and recall that X(E/KH
∞) is a torsion Λ-module. In

view of Proposition 2.8, it follows that X(E/K∞)H is Λ-torsion. Therefore the
intended result follows from [41, Lemma 4.7]. �

Recall that for H ∈ H and n ∈ N we abbreviate the Iwasawa algebra
Λ(Gal(KHn

∞ /KH,n)) to ΛKn (these fields have been defined in the introduction,
just below the large field diagram).

Lemma 2.10. Let H ∈ H. For any n, consider the sequence

0 −→ Selp∞(E/KHn
∞ ) −→ H1(GS(KHn

∞ ), E[p∞]) −→
⊕
v∈S

Jv(E/K
Hn
∞ ) −→ 0.

This sequence is exact for n = 0 and H2(GS(KH
∞), E[p∞]) = 0. Furthermore, if

X(E/K∞)f is finitely generated over Λ(H), then for all n

(1) X(E/KHn
∞ ) is a torsion ΛKn

-module.
(2) The sequence is exact.
(3) H2(GS(KHn

∞ ), E[p∞]) = 0.

Proof. By Lemma 2.7 we have that E(KHn
∞ )[p∞] is finite for all n. Taking this

into account, we have that if X(E/KHn
∞ ) is a torsion ΛKn

-module, then from [25,
Theorem 7.2] we get that the sequence in the statement of the lemma is exact and
also H2(GS(KHn

∞ ), E[p∞]) = 0 (note that loc. cit. Thm. 7.2 requires p to be odd.
However as K was assumed to be totally imaginary if p = 2, the proof also works
for p = 2). Since for H ∈ H we have that X(E/KH

∞) is a torsion Λ-module, we get
the desired result for n = 0.

Suppose that X(E/K∞)f is finitely generated over Λ(H). To complete the proof,
from what we just observed, it will suffice to show that X(E/KHn

∞ ) is a torsion ΛKn -
module. To prove this, we can proceed as in [10, Proposition 2.5]. Consider the
following commutative diagram with exact rows

X(E/K∞)Hn

ŝn
��

// (X(E/K∞)f )Hn

θn
��

// 0

X(E/KHn
∞ ) // X(E/KHn

∞ )f // 0

The map ŝn is the dual of the map sn in Proposition 2.8 and θn is induced by ŝn. By
Proposition 2.8, coker ŝn is finite and hence so is coker θn. Since X(E/K∞)f is fi-
nitely generated over Λ(H) and Hn has finite index in H, therefore (X(E/K∞)f )Hn

is finitely generated over Zp. Thus we get that X(E/KHn
∞ )f is finitely generated

over Zp. This implies that X(E/KHn
∞ ) is a torsion ΛKn

-module which completes
our proof. �
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Lemma 2.11. Let H ∈ H. For any n, consider the sequence

0 −→ Selp∞(E/K∞)Hn −→ H1(GS(K∞), E[p∞])Hn −→
⊕
v∈S

Jv(E/K∞)Hn −→ 0.

This sequence is exact for n = 0. If X(E/K∞)f is finitely generated over Λ(H),
then the sequence is exact for all n.

Proof. Now proceed as in [8, Lemma 2.3]. Let H ∈ H and n ≥ 0. For simplicity,
let Fn = KHn

∞ . Let Sn be the set of all the primes of Fn above those in S and Sp,n
be the primes of Sn above p.

Consider the map induced by restriction

hn :
⊕
v∈S

Jv(E/Fn)→
⊕
v∈S

Jv(E/K∞)Hn .

We claim that hn is surjective. By the same arguments as in the proof of Proposi-
tion 2.8, we have that cokerhn is a submodule of

Mn :=
∏

w∈Sn\Sp,n

H2(Hn,w, E(K∞,w)[p∞])×
∏

w∈Sp,n

H2(Hn,w, Ẽ(k∞,w)[p∞]).

In each factor above, we have also written w for a fixed prime of K∞ above w and
Hn,w is the decomposition group. k∞,w is the residue field and Ẽ is the reduction
of the elliptic curve. Since cdp(Hn,w) ≤ 1, we therefore see that Mn = {0}, whence
hn is surjective.

Consider the commutative diagram

H1(GS(K∞), E[p∞])Hn
ρn
//
⊕

v∈S Jv(E/K∞)Hn

H1(GS(Fn), E[p∞])

OO

λn
//
⊕

v∈S Jv(E/Fn)

hn

OO

The exactness of the sequence in the statement of the lemma is equivalent to the
surjectivity of ρn. Since hn is surjective, the commutative diagram shows that the
surjectivity of ρn will follow if λn is surjective. Therefore, the desired result follows
from Lemma 2.10. �

Lemma 2.12. Suppose that H is non-empty. Then H2(GS(K∞), E[p∞]) = 0.

Proof. Let F = KH
∞ for some H ∈ H. From Proposition 2.6 and

Lemma 2.10, it follows that H2(GS(F ), E[p∞]) = 0. As cdp(H) = 1,
the Hochschild-Serre spectral sequence implies that we have a surjection
H2(GS(F ), E[p∞]) � H2(GS(K∞), E[p∞])H . This implies H2(GS(K∞), E[p∞]) =
0. �

The above lemma will allow us to show

Lemma 2.13. For any H ∈ H we have Hi(H,H1(GS(K∞), E[p∞])) = 0 for all
i ≥ 1. Furthermore, if X(E/K∞)f is finitely generated over Λ(H), then for any n
we have Hi(Hn, H

1(GS(K∞), E[p∞])) = 0 for all i ≥ 1.

Proof. We proceed as in [8, Lemma 2.4]. Combining [48, Prop. 8.3.18] and the
previous lemma, we get that

Hm(GS(K∞), E[p∞]) = 0, m ≥ 2.
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In view of this result, the Hochschild-Serre spectral sequence (see [48, Lemma 2.1.3])
implies that for any i ≥ 1 we have an exact sequence

Hi+1(GS(KHn
∞ ), E[p∞])→ Hi(Hn, H

1(GS(K∞), E[p∞]))→ Hi+2(Hn, E(KH
∞)[p∞]).

The group on the right vanishes because cdp(Hn) = 1. For i ≥ 2 the group on the
left vanishes by [48, Prop. 8.3.18]. By Lemma 2.10, for i = 1 the group on the left
vanishes for n = 0 and assuming that X(E/K∞)f is finitely generated over Λ(H)
it vanishes for all n. This implies the result. �

Lemma 2.14. Let H ∈ H. We have H1(H,Selp∞(E/K∞)) = 0. If X(E/K∞)f is
finitely generated over Λ(H), then H1(Hn,Selp∞(E/K∞)) = 0 for all n ≥ 0.

Proof. We proceed as in [8, Lemma 2.6]. Let n ≥ 0 and assume that X(E/K∞)f
is finitely generated over Λ(H) if n > 0. Now consider the sequence

0 −→ Selp∞(E/K∞)Hn −→ H1(GS(K∞), E[p∞])Hn −→
⊕
v∈S

Jv(E/K∞)Hn −→ 0.

(2)
We will show that H1(Hn,Selp∞(E/K∞)) = 0 if the sequence (2) is exact.

Therefore, the lemma will follow from Lemma 2.11.
Assume that (2) is exact. Let

A∞ = img(H1(GS(K∞), E[p∞])→
⊕
v∈S

Jv(E/K∞)),

i.e. we have an exact sequence

0 −→ Selp∞(E/K∞) −→ H1(GS(K∞), E[p∞]) −→ A∞ −→ 0.

This exact sequence and Lemma 2.13 imply that we have an exact sequence

0→ Selp∞(E/K∞)Hn → H1(GS(K∞), E[p∞])Hn → AHn
∞ → H1(Hn,Selp(E/K∞))→ 0.

The exactness of the sequence (2) implies that

AHn
∞ =

⊕
v∈S

Jv(E/K∞)Hn ,

whence it is clear that H1(Hn,Selp(E/K∞)) = 0, as required. �

The final result in this section is

Proposition 2.15. Suppose that H is not empty. We have an exact sequence

0 −→ Selp∞(E/K∞) −→ H1(GS(K∞), E[p∞])
λ∞−−→

⊕
v∈S

Jv(E/K∞) −→ 0.

Proof. We proceed as in [8, Prop. 2.9]. Let

A∞ = img(λ∞ : H1(GS(K∞), E[p∞])→ ⊕v∈SJv(E/K∞))

i.e. we have an exact sequence

0 −→ Selp∞(E/K∞) −→ H1(GS(K∞), E[p∞]) −→ A∞ −→ 0.
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Choose an element H ∈ H, and let F = KH
∞. It then follows from the above se-

quence and from Lemma 2.13 that

H1(H,A∞) ∼= H2(H,Selp∞(E/K∞)),

whence H1(H,A∞) = 0 because cdp(H) = 1.
Now let B∞ = cokerλ∞. Taking the Hcyc-cohomology of the sequence

0→ A∞ →
⊕
v∈S

Jv(E/K∞)→ B∞ → 0

and using Lemma 2.11, we get that BH∞ injects into H1(H,A∞) = 0. Therefore,
B∞ = 0. This implies that λ∞ is surjective. �

3. The maximal finite submodule of X(E/KHn
∞ )

In this section we will use the work of Hachimori and Matsuno [23] to bound the
order of the maximal finite submodule of X(E/KHn

∞ ). This is used for the proof of
Proposition 4.3 in the next section which in turn is a key tool used in the proof of
the implication (a)⇒ (f) in Theorem 1.3. Moreover, we prove Lemma 3.5, which
shows that the additional hypothesis in part (f) of Theorem 1.3 is rather mild.

If A is an abelian group, let Adiv be the maximal divisible subgroup of A. First
we need

Lemma 3.1. Let L be a number field, L∞/L be a Zp-extension with tower
fields Ln, E an elliptic curve defined over L and p a rational prime. Let
sn : Selp∞(E/Ln)→ Selp∞(E/L∞)Γn be the map induced by restriction (here, Γ =

Gal(L∞/L) and Γn = Γp
n

). Then, for any n, ker sn is finite of order at most
[E(L∞)[p∞] : E(L∞)[p∞]div].

Proof. This follows from a similar argument to the one used in the proof of Pro-
position 2.8. �

We now have the following important theorem.

Theorem 3.2 (Hachimori-Matsuno [23]). We retain the setup and notation of
the previous lemma and assume that the Pontryagin dual of Selp∞(E/L∞), de-
noted X(E/L∞), is Zp[[Γ]]-torsion. Then the maximal finite Zp[[Γ]]-submodule of
X(E/L∞) is isomorphic to lim←− ker sn where the inverse limit is with respect to the
corestriction maps.

The following lemma is easy to prove. We leave the proof for the reader.

Lemma 3.3. Let M > 0 be an integer. Then there exists C > 0 satisfying the
following: If (Bi, ϕij), i ∈ N is a projective system and for all i ∈ N Bi is finite of
order at most M , then lim←−Bi is finite of order at most C.

Now we return to our setup and show

Theorem 3.4. Suppose that E(K∞)[p∞] is finite. Then there exists C > 0 satis-
fying the following: Assume H ∈ H and n ≥ 0. If X(E/KHn

∞ ) is ΛKn
-torsion, then

the maximal finite ΛKn
-submodule of X(E/KHn

∞ ) has order at most C.
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Proof. Suppose that E(K∞)[p∞] is finite. Assume H ∈ H and n ≥ 0. Denote KHn
∞

by L∞ and KH,n by L. Then L∞/L is a Zp-extension with tower fields Ln. Let
sn : Selp∞(E/Ln) → Selp∞(E/L∞)Γn be the map induced by restriction. Since
E(L∞)[p∞] is finite with #E(L∞)[p∞] ≤ #E(K∞)[p∞], we get from Lemma 3.1
that ker sn is finite of order at most #E(K∞)[p∞]. From this we see that the
desired result follows from Theorem 3.2 and Lemma 3.3. �

Lemma 3.5. E(K∞)[p∞] is finite if either

(1) E does not have complex multiplication
(2) E has complex multiplication by the ring of integers of a quadratic imagin-

ary field L, [K : Q] ≤ 8 and p ≥ 5. In this case we have E(K∞)[p∞] = 0.

Proof. (1) follows from Zarhin’s theorem [58]. For (2) assume that E has com-
plex multiplication by the ring of integers OL of a quadratic imaginary field L,
[K : Q] ≤ 8 and p ≥ 5. To prove the desired result it will suffice to show that
E(LK∞)[p∞] = 0.

We now use an idea similar to the proof of [59, Lemma 3.5]. Let ∆ :=
Gal(L(E[p])/L). According to [53, Corollary 5.20(ii)] we have an isomorphism
∆ ∼= (OL/pOL)×. As E has ordinary reduction at p, p splits in L/Q. Whence we
have ∆ ∼= (Z/pZ)× × (Z/pZ)×. Since p ≥ 5, this implies that #∆ ≥ 16. Combin-
ing this with the fact that [K : Q] ≤ 8 gives that ∆′ := Gal(LK(E[p])/LK) is a
nontrivial group whose order is prime to p. As K∞/K is pro-p, we may identify
Gal(LK∞(E[p])/LK∞) with ∆′.

Now assume that E(LK∞)[p∞] 6= 0. Then by an appropriate choice of a
Fp-basis of E[p] we have an injection from Gal(LK∞(E[p])/LK∞) to the sub-

group of GL2(Fp) consisting of matrices of the form

(
1 α
0 1

)
, where α ∈ Fp.

But if α 6= 0, then

(
1 α
0 1

)
generates a group of order p. It follows that

Gal(LK∞(E[p])/LK∞) ∼= ∆′ is trivial. This is a contradiction since ∆′ is non-
trivial of order prime to p by the above. �

4. A control theorem for (X(E/K∞)f )Hn → X(E/KHn
∞ )f

In this section, for H ∈ H, we study the kernels and cokernels of the maps
θn : (X(E/K∞)f )Hn

→ X(E/KHn
∞ )f . The proof of a control theorem for this map

is technically quite delicate.
First, we need

Proposition 4.1. Let H ∈ H and let n,m ≥ 0 be arbitrary integers. The maps
(induced by the maps sn in Proposition 2.8):

s′n,m : Selp∞(E/KHn
∞ )/pm → Selp∞(E/K∞)Hn/pm

have finite kernel and cokernel and their orders are bounded independently of n and
m.

Proof. For simplicity, let Sn = Selp∞(E/KHn
∞ ) and S∞ = Selp∞(E/K∞).

Moreover, we let m ≥ 0 be arbitrary but fixed, and we abbreviate s′n,m to s′n for
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convenience. Consider the following commutative diagram

0 // pm(SHn
∞ ) // SHn

∞
// SHn
∞ /pm // 0

0 // pmSn //

s̃n

OO

Sn

sn

OO

// Sn/p
m

s′n

OO

// 0

By Proposition 2.8, coker sn is finite and bounded independently of n. Since we
have a surjection coker sn � coker s′n, therefore the same is true for coker s′n.

By the snake lemma, we have an exact sequence ker sn → ker s′n → coker s̃n.
Since ker sn is finite and bounded independently of n by Proposition 2.8, there-
fore to show that ker s′n is finite and bounded independently of n, we only need
to show that coker s̃n is finite and bounded independently of n. To this end, note
that img s̃n = pm img sn. Therefore the multiplication by pm map induces a sur-
jection from coker sn onto coker s̃n. This implies that coker s̃n is finite and the
order is bounded independently of n, because this property is true for coker sn by
Proposition 2.8. �

For H ∈ H, we study the kernels and cokernels of the maps
θn : (X(E/K∞)f )Hn

→ X(E/KHn
∞ )f . We want to show that ker θn and coker θn

are finite and bounded independently of n. In order to prove this, we require the
following condition:
Condition CH,m: There is an m > 0 such that X(E/K∞)[p∞] = X(E/K∞)[pm]
and that X(E/KHn

∞ )[p∞] = X(E/KHn
∞ )[pm] for all n.

At the end of this section, we shall show that this condition is met if X(E/K∞)f
is finitely generated over Λ(H) and E(K∞)[p∞] is finite.

Proposition 4.2. Let H ∈ H. Assume that X(E/K∞)f is finitely generated over
Λ(H). Then the maps (induced by the dual of the maps sn in Proposition 2.8)

θn : (X(E/K∞)f )Hn → X(E/KHn
∞ )f

have finite kernels and cokernels. Furthermore, if condition CH,m is met then the
orders of these kernels and cokernels are bounded independently of n.

Proof. Assume that X(E/K∞)f is finitely generated over Λ(H). For simplicity, let
Fn = KHn

∞ . Fix n ∈ N and let m > 0 be such that X(E/K∞)[p∞] = X(E/K∞)[pm]
and X(E/Fn)[p∞] = X(E/Fn)[pm]. Consider the commutative diagram with exact
rows

X(E/K∞)[pm]Hn

φn

��

// X(E/K∞)Hn

ŝn

��

// (X(E/K∞)f )Hn

θn

��

// 0

0 // X(E/Fn)[pm] // X(E/Fn) // X(E/Fn)f // 0

From the snake lemma applied to this diagram, we get an exact sequence

kerφn → ker ŝn → ker θn → cokerφn → coker ŝn → coker θn → 0. (3)

By Proposition 2.8, both ker ŝn and coker ŝn are finite. This, together with the
exact sequence (3), implies that coker θn is finite. Also since ker ŝn is finite, the
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exact sequence (3) shows that in order to show that ker θn is finite it will suffice to
show that cokerφn is finite. We now proceed to show this.

Since X(E/K∞)f is finitely generated over Λ(H) and Hn has finite index in H,
therefore (X(E/K∞)f )Hn

is finitely generated over Zp. Therefore ker θn is finitely
generated over Zp. From this fact and the fact that coker ŝn is finite, we see from
the exact sequence (3) that cokerφn is actually finite (it is finitely generated over
Zp and annihilated by pm).

From now on suppose that condition CH,m is met, and choose m accordingly.
We want to show that the orders of ker θn and coker θn are bounded independently
of n. By Proposition 2.8, the cardinalities of ker ŝn and coker ŝn are bounded
independently of n. Therefore the exact sequence (3), implies that the order of
coker θn is bounded independently of n. Also since ker ŝn is finite and bounded
independently of n, the exact sequence (3) shows that in order to show that the
order of ker θn is bounded independently of n, it will suffice to show that the order
of cokerφn is bounded independently of n.

Dualizing φn, we get

φ̂n : Selp∞(E/Fn)/pm → (Selp∞(E/K∞)/pm)Hn .

We will show that the order of ker φ̂n is bounded independently of n. Consider the
exact sequence:

0→ pmSelp∞(E/K∞)→ Selp∞(E/K∞)→ Selp∞(E/K∞)/pm → 0.

For any n, this sequence gives us an exact sequence

0→ (pmSelp∞(E/K∞))Hn → Selp∞(E/K∞)Hn → (Selp∞(E/K∞)/pm)Hn .

Therefore we have an injection

ϕn : Selp∞(E/K∞)Hn/(pmSelp∞(E/K∞))Hn ↪→ (Selp∞(E/K∞)/pm)Hn .

We define the map

ψn : Selp∞(E/Fn)/pm → Selp∞(E/K∞)Hn/(pmSelp∞(E/K∞))Hn .

Since ϕn is an injection, therefore kerψn = ker(ϕn ◦ ψn) = ker φ̂n. So we see that
we need to show that the order of kerψn is bounded independently of n. Consider
the exact sequence

0→ Selp∞(E/K∞)[pm]→ Selp∞(E/K∞)
×pm−−−→ pmSelp∞(E/K∞)→ 0.

This sequence induces an exact sequence

0→ pm(Selp∞(E/K∞)Hn)→ (pmSelp∞(E/K∞))Hn → H1(Hn,Selp∞(E/K∞)[pm])→ 0.
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We have a zero on the right because H1(Hn,Selp∞(E/K∞)) = 0 from Lemma 2.14.
This exact sequence gives us an exact sequence

0→ H1(Hn,Selp∞(E/K∞)[pm])→ Selp∞ (E/K∞)Hn

pm
πn−−→ Selp∞ (E/K∞)Hn

(pmSelp∞ (E/K∞))Hn
→ 0. (4)

Let s′n : Selp∞(E/Fn)/pm → Selp∞(E/K∞)Hn/pm be the map in Proposition 4.1.
Then ψn = πn ◦ s′n. It is easy to see that we have an exact sequence

0→ ker s′n → kerψn → kerπn → coker s′n.

Taking the exact sequence (4) into account, the above exact sequence becomes

0→ ker s′n → kerψn → H1(Hn,Selp∞(E/K∞)[pm])→ coker s′n.

Recall that kerψn is finite for all n. We need to show its order is bounded. Accord-
ing to Proposition 4.1, both ker s′n and coker s′n are finite and bounded independ-
ently of n. Therefore by the above exact sequence, H1(Hn,Selp∞(E/K∞)[pm]) is
finite for all n and we need to show that its order is bounded independently of n.
The Pontryagin dual of H1(Hn,Selp∞(E/K∞)[pm]) is (X(E/K∞)/pm)Hn . Since
X(E/K∞) is finitely generated over the Noetherian ring Λ2, therefore it follows that
X(E/K∞)/pm is a Noetherian Λ2-module. The Λ2-submodules (X(E/K∞)/pm)Hn

form an increasing nested chain, the chain must stabilize and so the orders are
bounded. This completes the proof. �

We now show

Proposition 4.3. Let H ∈ H. Assume that X(E/K∞)f is finitely generated over
Λ(H) and E(K∞)[p∞] is finite. Then condition CH,m is met.

Proof. Let H ∈ H and assume that the hypotheses in the statement of the propos-
ition are true. As usual, let Fn = KHn

∞ . From Lemma 2.10 we get that X(E/Fn)
is a torsion ΛKn -module for all n. From Theorem 3.4 it follows that there exists
t > 0 such that for all n the maximal finite ΛKn -submodule of X(E/Fn) is anni-
hilated by pt. Also since X(E/K∞) is finitely generated over the Noetherian ring
Λ2, therefore X(E/K∞)[p∞] = X(E/K∞)[pm] for some m ≥ t. We will show that
X(E/Fn)[p∞] = X(E/Fn)[p2m] for all n.

For any n ≥ 0, let Y (E/Fn) = X(E/Fn)/X(E/Fn)[pm]. Then we have a com-
mutative diagram

0 // X(E/K∞)[pm]Hn

φn

��

// X(E/K∞)Hn

ŝn

��

// (X(E/K∞)f )Hn

θn

��

// 0

0 // X(E/Fn)[pm] // X(E/Fn) // Y (E/Fn) // 0

To see that the first map on the top row is an injection, we first note that
since X(E/K∞)f is finitely generated over Λ(H) we have by Lemma 2.14 that
H1(Hn, X(E/K∞)) = 0. But X(E/K∞)f ∼= pmX(E/K∞) which is a submodule
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of X(E/K∞). It follows that H1(Hn, X(E/K∞)f ) = 0 because cdp(Hn) = 1. This
shows that the first map on the top row is in fact an injection. From the snake
lemma applied to above diagram, we get an exact sequence

0→ kerφn → ker ŝn → ker θn → cokerφn → coker ŝn → coker θn → 0. (5)

By Proposition 2.8, ker ŝn is finite. This, together with the exact sequence (5),
implies that kerφn is finite. Since X(E/K∞)f is finitely generated over Λ(H) and
Hn has finite index in H, therefore (X(E/K∞)f )Hn

is finitely generated over Zp.
Therefore, for all n, ker θn is finitely generated over Zp. Combining this with the
fact that coker ŝn is finite by Proposition 2.8, the exact sequence (5) shows that
cokerφn is finitely generated over Zp and hence is finite since the target group is
annihilated by pm.

So we have shown that the map

φn : X(E/K∞)[pm]Hn
→ X(E/Fn)[pm]

has finite kernel and cokernel. In an identical way we can show that the map

φ′n : X(E/K∞)[p∞]Hn
→ X(E/Fn)[p∞]

has finite kernel and cokernel. Combining this with the fact that X(E/K∞)[p∞] =
X(E/K∞)[pm], we get that µGn/Hn

(X(E/Fn)[p∞]) = µGn/Hn
(X(E/Fn)[pm]).

Taking Lemma 2.1 into account, we have an exact sequence

0→
s⊕
i=1

Λ(Gn/Hn)/pm
′
i → X(E/Fn)[p∞]→ B → 0 (6)

where B is finite. This exact sequence induces the sequence

0→
s⊕
i=1

(Λ(Gn/Hn)/pm
′
i)[pm]→ X(E/Fn)[pm]→ B[pm] (7)

Since we have µGn/Hn
(X(E/Fn)[p∞]) = µGn/Hn

(X(E/Fn)[pm]) we see from the
exact sequences (6) and (7) that we must have m′i ≤ m for i = 1, ..., s.

The exact sequence (6) induces an exact sequence

0→ A′ → X(E/Fn)[p∞]→
s⊕
i=1

Λ(Gn/Hn)/pm
′
i → B′ → 0 (8)

where A′ and B′ are finite. By assumption, pt annihilates A′ and m ≥ t. Also
m′i ≤ m for i = 1, ..., s. Therefore it follows that p2m annihilates X(E/Fn)[p∞], i.e.
X(E/Fn)[p∞] = X(E/Fn)[p2m]. This completes the proof.

�

5. µ-invariants and the MH(G)-property

In this section, we prove results that will help to establish the equivalences
(a)⇔ (b)⇔ (c) of Theorem 1.3. The first two results below are proven for Hcyc in
[10] and our proofs will be very similar.

Theorem 5.1. For any H ∈ H we have

µG(X(E/K∞)) = µG/H(X(E/KH
∞))− µG/H(H0(H,X(E/K∞)f )).
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Also, if X(E/K∞)f is finitely generated over Λ(H), then for all n ≥ 0 we have

µGn(X(E/K∞)) = µGn/Hn
(X(E/KHn

∞ )).

Proof. We follow the proof of [8, Prop. 2.12] closely. For simplicity, let Fn = KHn
∞

with F = F0. Also let X∞ = X(E/K∞). First, recall from [27, Corollary 1.7] that
if M is a finitely generated Λ(G)-module, then

pµG(M) =
∏
i≥0

#Hi(G,M [p∞])(−1)i = χ(G,M [p∞]).

We have a similar formula when M is a finitely generated Λ(G/H)-module. From
the Hochschild-Serre spectral sequence it is easy to prove that

χ(G,X∞[p∞]) =
∏
i=0,1

χ(G/H,Hi(H,X∞[p∞]))(−1)i .

From this we get

µG(X∞) = µG/H(H0(H,X∞[p∞]))− µG/H(H1(H,X∞[p∞])). (9)

Consider the exact sequence

0→ X∞[p∞]→ X∞ → X∞,f → 0. (10)

Since cdp(H) = 1, therefore the functor H1(H,−) is left exact. On the other
hand, one has that X[p∞] ⊆ X∞ and X∞,f ∼= ptX∞ ⊆ X∞ for some big enough
t. Therefore, combining the above observations with Lemma 2.14, we have that
H1(H,X∞[p∞]) = H1(H,X∞,f ) = 0. This fact implies that we have a short exact
sequence

0→ H0(H,X∞[p∞])→ H0(H,X∞)→ H0(H,X∞,f )→ 0. (11)

Taking (9) into account, we obtain

µG(X∞) = µG/H(H0(H,X∞))− µG/H(H0(H,X∞,f )). (12)

But the quantity µG/H(H0(H,X∞)) is precisely µG/H(X(E/F )) by virtue of
the dual descent map (X∞)H → X(E/F ) having finite kernel and cokernel (cf.
Proposition 2.8). Therefore we get the desired formula for n = 0.

Now assume that X∞,f is finitely generated over Λ(H). Then from Lemma 2.14
we get that H1(Hn, X∞) = 0. Also, Lemma 2.10 gives that X(E/Fn) is a torsion
Λ(Gn/Hn)-module. Therefore, the same proof above may be adapted to show that
for any n ≥ 0 that

µGn(X∞) = µGn/Hn
(X(E/Fn))− µGn/Hn

(H0(Hn, X∞,f )). (13)

But since X∞,f is finitely generated over Λ(H) and Hn has finite index in H,
therefore (X∞,f )Hn

is finitely generated over Zp. In particular, this quotient is a
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torsion Λ(Gn/Hn)-module and has µGn/Hn
-invariant zero. We see from this that

the formula (13) becomes

µGn
(X∞) = µGn/Hn

(X(E/Fn)).

�

We also have kind of a converse to Theorem 5.1.

Corollary 5.2. Let H ∈ H. If µG(X(E/K∞)) = µG/H(X(E/KH
∞)), then

X(E/K∞)f is finitely generated over Λ(H).

Proof. According to the previous theorem, this equality implies that
µG/H((X(E/K∞)f )H) = 0. According to Proposition 2.8, the map

α : X(E/K∞)H → X(E/KH
∞) has finite kernel and cokernel. Since by

definition of H, X(E/KH
∞) is a torsion Λ(G/H)-module, we get that X(E/K∞)H

is also a torsion Λ(G/H)-module. It follows that (X(E/K∞)f )H is also a torsion
Λ(G/H)-module. Therefore, since µG/H((X(E/K∞)f )H) = 0, we get that
(X(E/K∞)f )H is finitely generated over Zp. This implies that X(E/K∞)f is
finitely generated over Λ(H). �

6. Asymptotic growth of Iwasawa invariants

In this section, we prove analogues of results of Cuoco on the asymptotic growth
of Iwasawa invariants in Z2

p-extensions. These results are interesting in their own
right, but they are also related to parts (b) and (c) of Theorem 1.3. We will use
the main results of this section in the proof of Proposition 7.1.

First, we describe the basic setting from [12]. We choose two independent Zp-
extensions k∞ and k′∞ of K (i.e., k∞ ∩ k′∞ = K) such that K∞ = k∞ · k′∞. Let kn,
n ∈ N, be the unique subfield of k∞ of degree pn over K. Then we consider the
sequence of Zp-extensions Fn/kn, where we let Fn = k′∞ · kn for every n ∈ N. In

the notation of the introduction, kn = KH,n and Fn = KHn
∞ , where Hn = Hpn and

H = Gal(K∞/k
′
∞), and we have the following diagram of fields:

K∞

Hn

H

k∞ Fn = KHn
∞

kn KH
∞ = k′∞

K

The classical Iwasawa-Greenberg module attached to Fn (i.e., the projective
limit of the ideal class groups of the intermediate number fields of the Zp-extension
Fn/kn), which will be denoted Cn for the moment, is a finitely generated and torsion
ΛKH,n

-module, where ΛKH,n
= Zp[[Gal(Fn/kn)]], as in the introduction. Therefore

it makes sense to define µ- and λ-invariants for each Cn.
The main result of [12] describes the asymptotic growth of the µ- and the λ-

invariants of the Cn:
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Theorem 6.1 (Cuoco). In the above setting (in particular, k′∞ = KH
∞), there exist

constants l,m0,m1, c1 and c2 which are independent of n such that for all sufficiently
large n,

µ(Cn) = m0p
n +m1n+ c1

and
λ(Cn) = lpn + c2.

Note that the base fields grow in the Zp-extensions Fn/kn, and that these fields,
and therefore also the Iwasawa invariants µ(Cn) and λ(Cn), depend crucially on
the fixed choice of the subgroup H of G = Gal(K∞/K).

In subsequent work, Cuoco was able to describe the arithmetic meaning of the
constants m0, m1 and l, as follows. Let C = C(K∞) be the projective limit of the
ideal class groups of all intermediate number fields contained in the Z2

p-extension
K∞ of K. Then C is a finitely generated torsion Λ2-module, and one defines
the generalised Iwasawa invariants of C as follows (cf. [13, Definitions 1.1 and
1.2]). Let fC ∈ Λ2 be the characteristic power series of C, and write fC = pm0 · gC ,
where gC is not divisible by p. Then m0 is nothing but the invariant µG(C),
where G = Gal(K∞/K). Moreover, we consider the image gC of gC in the quotient
Iwasawa algebra Ω2 = Λ2/p. Then we let

l0(C) =
∑
P
vP(gC),

where the sum runs over the prime ideals of the form P = (σ − 1) ⊆ Λ2 for elements
σ ∈ G \Gp. Note that this is a finite sum, since the ring Ω2 is a Noetherian UFD.

Proposition 6.2 (Cuoco). Let C be as above, and consider the constants from
Theorem 6.1. Then

m0 = µG(C), l0(C) =
∑
H⊆G

m1(H),

where H ⊆ G runs over the subgroups of dimension 1 and m1(H) is the constant
from Theorem 6.1, applied to H = Gal(K∞/k

′
∞). In particular, Cuoco has shown

that m1(H) is zero for all but finitely many H.
If Cf := C/C[p∞] is finitely generated over Λ(H), then moreover the constant l

from the second growth formula in Theorem 6.1 satisfies

l = rankΛ(H)(Cf ).

In this section, we prove analogues of these results for Selmer groups. Recall
the notion H from Definition 1.1. It will turn out that the validity of the MH(G)-
property for someH ∈ H, i.e. the quotientX(E/K∞)f being finitely generated over
Λ(H), is equivalent to having a particularly uniform growth of the µ-invariants (see
the remark after Theorem 8.1 below). In all what follows, we abbreviate X(E/K∞)
to X.

Theorem 6.3. Let E be an elliptic curve defined over K with good ordinary reduc-
tion at p, let K∞ be a Z2

p-extension of K, and let H ⊆ G be a subgroup of dimension
1. We let Xn be the Pontryagin dual of the Selmer group of E over the Zp-extension
Fn/kn, where kn has degree pn over K, Fn = KHn

∞ and Fn = kn ·KH
∞ for every n,

as in the introduction.
We assume that each Xn is a finitely generated torsion Λn := Zp[[Gal(Fn/kn)]]-

module, and we identify each of these group rings with Λ1 = Zp[[T ]]. Then we can
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define µ- and λ-invariants of the Xn, which we will denote by µn and λn. Suppose
that either of the following conditions hold:

(i) H ∈ H,
(ii) H 6= ∅ and the decomposition group Dv ⊆ G of each of the primes v of K

above p has Zp-rank two.

Then the following assertions hold.
(a) We have

µn = µG(X)pn +m1n+O(1) (14)

and

λn = lpn +O(1) (15)

for suitable constants m1 and l.
(b) The parameter m1 = m1(H) is zero for all but finitely many choices of H, and∑

H⊆G

m1(H) = l0(X),

where l0 is defined as above and H runs over all dimension 1 subgroups of
G = Gal(K∞/K), as in Proposition 6.2.

(c) If Xf is finitely generated as a Λ(H)-module, then moreover

l = rankΛ(H)(Xf ).

Remark. (1) We stress that the sum in (b) is taken over all H ⊆ G of dimension
1, not only over H ∈ H. This is one of two main reasons for us to prove the
asymptotic formulas (14) and (15) also for H 6∈ H (under the assumption (ii)),
although this will require to prove a stronger control theorem (see Proposi-
tion 6.8 below). The second motivation to study also the case H 6∈ H comes
from Section 10 below: we will apply Theorem 6.3 to the anticyclotomic Zp-
extension Kac of an imaginary quadratic number field. However, we cannot
ensure that the corresponding subgroup H of G, fixing Kac, is contained in H,
because some of the primes in S might split completely in Kac. Therefore it
will be very useful to have Theorem 6.3(a) available also for H 6∈ H.

(2) If Xf is finitely generated as a Λ(H)-module, as in part (c) of the theorem,
then the general hypothesis that each Xn is finitely generated and torsion over
Λn is automatically satisfied, by Lemma 2.10.

(3) Suppose that H ∈ H and that Xf is finitely generated over Λ(H). Then The-
orem 5.1 implies that actually µn = µG(X)pn, and in particular m1 = 0, in
equation (14). Moreover, we will show in Theorem 8.1 below that in this case
λn = lpn in equation (15).

Corollary 6.4. In the setting of Theorem 6.3, suppose that K∞ contains only
finitely many primes above p. If the λ-invariants of the X(E/L), L running over all
the Zp-extensions of K, are bounded, then m1(H) = 0 for each H ⊆ G of dimension
1.

We will break up the proof of Theorem 6.3 and Corollary 6.4 into several lemmas.
Fix the Zp-extensions k∞ =

⋃
kn and k′∞ = KH

∞, and suppose that the topological
generators σ and τ of G ∼= Z2

p are chosen such that H = Gal(K∞/k
′
∞) is gener-

ated topologically by σ and Gal(K∞/k∞) is generated topologically by τ . Then
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Λ(G) = Λ2 can be identified with the ring of formal power series Zp[[T,U ]] in two
variables, where U = σ − 1 and T = τ − 1.

The following two module-theoretic results are taken without changes from [12].
We must, however, warn the reader that Cuoco’s notation differs from ours: in the
current section (as in the whole paper) the subgroup H denotes the subgroup of
G = Gal(K∞/K) which fixes k′∞. In Cuoco’s article, H corresponds to the quotient
group Gal(k′∞/K) instead.

We will use the following notation: for any n ∈ N, we let

ηn = (U + 1)p
n

− 1. (16)

For two integers n and m with n > m, we define

αn,m =
ηn
ηm

= 1 + (U + 1)p
m

+ (U + 1)p
m+1

+ . . .+ (U + 1)p
n

. (17)

If m is fixed, then αn,m is abbreviated to αn.

Lemma 6.5. Let V be a finitely generated torsion Λ2-module, and let N be a
pseudo-null submodule. Suppose that (Vn)n∈N is a family of submodules of V and
that there exists an integer n0 ∈ N such that the following hold for each integer
n ≥ n0:
• Vn = αn,n0

· Vn0
, and

• ηn · V ⊆ Vn.
Then (N + Vn)/Vn is a finitely generated and torsion Λ(G/H)-module for each
n > n0, and the invariants µG/H((N + Vn)/Vn) and λG/H((N + Vn)/Vn) become
constant for sufficiently large n.

Proof. This is [12, Lemma 2.8]. �

Lemma 6.6. Let W be a finitely generated and torsion Λ2-module, and suppose
that there exists an integer n0 such that the quotient W/αnW is a finitely generated
and torsion Λ(G/H)-module for each n > n0. Then there exist constants l, m0,
m1, c1 and c2, independent of n, such that

µG/H(W/αnW ) = m0p
n +m1n+ c1

and

λG/H(W/αnW ) = lpn + c2

for each sufficiently large n ∈ N. Here m0 = µG(W ) denotes the largest power of p
which divides the characteristic power series of W in Λ2.

Proof. This follows from [12, Proposition 2.1 and Remark on p. 430]. �

Now we prove the first part of Theorem 6.3, namely the existence of the asymp-
totic formulas in (a).

Lemma 6.7. There exist constants such that equations (14) and (15) hold.

Proof. Fix a pseudo-isomorphism ϕ : X −→M , where M is an elementary torsion
Λ2-module. We let N and R denote the kernel and the image of ϕ. Then N and
M/R are pseudo-null Λ2-modules.

Recall the definitions (16) and (17) of ηn and αn,0 = ηn
U . Now we define

Yn = ηn ·X for every n ∈ N, and we let Wn = ϕ(Yn), n ∈ N. Then

Wn = αn,0 ·W0
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for each n ∈ N, since ϕ is a Λ2-module homomorphism. The map ϕ induces surjec-
tions

ϕn : X/Yn � R/Wn

with kernel (N + Yn)/Yn for each n ∈ N.
We will prove a control theorem below (see Proposition 6.8) which is independent

from the results of Cuoco and which implies that the kernels and the cokernels of
the canonical maps

X/Yn = X/ηnX −→ X(E/Fn) = Xn

are torsion Zp[[T ]]-modules, where we recall that X(E/Fn) denotes the Pontryagin
dual of the Selmer group of E over Fn = KHn

∞ (when H ∈ H it follows from Pro-
position 2.8 that the kernels and cokernels are even finite and of bounded order).
In particular, since X(E/Fn) is a torsion Zp[[T ]]-module by assumption, the same
holds true for the quotient X/Yn, n ∈ N. Therefore also R/Wn and (N + Yn)/Yn
(i.e. the kernel and the image of ϕn) are torsion Zp[[T ]]-modules. Moreover, the ad-
ditivity of µ- and λ-invariants on short exact sequences of finitely generated torsion
Zp[[T ]]-modules imply that

µ(X/Yn) = µ(R/Wn) + µ((N + Yn)/Yn)

and
λ(X/Yn) = λ(R/Wn) + λ((N + Yn)/Yn).

Now we can apply Lemma 6.5 in order to conclude that the µ-and λ-invariants of
the quotients (N + Yn)/Yn stabilise. Moreover,

µ(R/Wn) = µ(R/W0) + µ(W0/αnW0)

for every n > 0, and a similar equation holds for the λ-invariants.
Note that W0 ⊆M is a finitely generated and torsion Λ2-module, and

W0/αnW0 ⊆ R/Wn is a finitely generated and torsion Zp[[T ]]-module for each
n > 0. Therefore by Lemma 6.6 and the above we conclude that for sufficiently
large n we have

µ(X/Yn) = µG(X)pn +m1n+ c1

and
λ(X/Yn) = lpn + c2

for suitable constants m1, l, c1 and c2.
By Proposition 6.8 we have that

|λ(X/Yn)− λ(Xn)|
and

|µ(X/Yn)− µ(Xn)|
are both bounded independently of n. Combining this fact with the equations for
µ(X/Yn) and λ(X/Yn) above, we get equations (14) and (15).

�

The next result is a control theorem which works also if H 6∈ H. For any n we
let ηn be defined as in (16) and φn : X/ηnX −→ Xn to be the dual of the map
(induced by restriction) sn : Selp∞(E/Fn)→ Selp∞(E/K∞)Hn .

Proposition 6.8. Suppose that the hypotheses from Theorem 6.3 hold. Then for
any n ≥ 0 the kernel and cokernel of the map φn : X/ηnX −→ Xn are finitely gen-
erated torsion Zp[[T ]]-modules whose µ- and λ-invariants are bounded as n varies.
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Proof. If H ∈ H, we get the desired result from Proposition 2.8. Otherwise if
H /∈ H, we assume that H 6= ∅ and that the decomposition group of any prime of
K∞ above p is an open subgroup of Gal(K∞/K). In this more general setting the
only concern is that one has to take more care to prove that Cn and Dn (using the
notation in the proof of Proposition 2.8) are finite when primes in Sn \ Sp,n split
completely in Fn/kn and when not all primes in Sp,n ramify in Fn/kn.

Now consider the map

hn :
⊕
v∈S

Jv(E/Fn)→
⊕
v∈S

Jv(E/K∞).

By the proof of Proposition 2.8 we see that:

(i) The Pontryagin dual of H1(Gal(K∞/Fn), E(K∞)[p∞]) surjects onto cokerφn,
(ii) kerφn injects into a quotient of the Pontryagin dual of kerhn.

Let γ be a topological generator of Gal(K∞/Fn). We have
H1(Gal(K∞/Fn), E(K∞)[p∞]) = E(K∞)[p∞]/(γ − 1)E(K∞)[p∞]. Therefore
corankZp(H1(Gal(K∞/Fn), E(K∞)[p∞])) ≤ 2. It then follows from (i) above that
cokerφn is a torsion Zp[[T ]]-module with µ = 0 and λ ≤ 2.

Now we may write kerhn =
⊕

v∈S kerhn,v. We now prove that kerφn is a torsion
Zp[[T ]]-module whose µ- and λ-invariants are bounded as n varies. From (ii) above
it will suffice to show that for each v ∈ S the Pontryagin dual of kerhn,v is a torsion
Zp[[T ]]-module whose µ- and λ-invariants are bounded as n varies.

First, consider a prime v ∈ S that does not divide p. Assume that v does not
split completely in F/k. Then for any sufficiently large n, no prime of kn above v
splits completely in Fn/kn. It follows then by the same argument as in Proposition
2.8 that we have that kerhn,v = 0.

Now assume that v splits completely in F/k. Let n ≥ 0. We have that every
prime of kn above v splits completely in Fn/kn. Recall from the introduction that we
defined Jv(E/Fn) as Jv(E/Fn) = lim−→

⊕
w|vH

1(Lw, E)[p∞] where the direct limit

runs over finite extensions L of kn contained in Fn. Had there been a finite number
of primes of Fn above v, we could then write Jv(E/Fn) = ⊕w|vH1(Fn,w, E)[p∞],
where the sum runs over all primes w of Fn above v. This was the case in the
proof of Proposition 2.8 and so as in the proof we were able to express kerhn,v
as a finite direct sum of cohomology groups. However as v splits completely in
Fn/kn we cannot write Jv(E/Fn) as a direct sum. This will make the expression
of kerhn,v more complicated. Let l be the rational prime below v. If L is a finite

extension of Ql, then by Mattuck’s theorem E(L) ∼= Zl[L:Ql]×T where T is a finite
group. Since l 6= p, we get from this that E(L)⊗Qp/Zp = 0. Therefore we have an
isomorphism H1(L,E)[p∞] ∼= H1(L,E[p∞]). By taking direct limits, we have such
an isomorphism for any algebraic extension L of Ql. Now let {Fn,m}m∈N be the
layers of the Zp-extension Fn/kn. Using the isomorphism just mentioned as well as
Shapiro’s lemma we can write

kerhn,v = lim−→
m

⊕
wm|v

H1(Gal(K∞,wm
/(Fn,m)wm

), E(K∞,wm
)[p∞]) (18)

where the direct sum runs over the primes wm of Fn,m above v. In the above we
have also written wm for a fixed place of K∞ above wm. Now let {w′1, w′2, ..., w′c} be
the set of primes of Fn,0 = kn above v. Let 1 ≤ i ≤ c. Since kn,w′

i
is a finite extension

of Ql we have that E(kn,w′
i
)[p∞] is finite. So it follows by the same argument as
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in the proof of Proposition 2.8 that H1(Gal(K∞,w′
i
/kn,w′

i
), E(K∞,w′

i
)[p∞]) is finite.

We can write

H1(Gal(K∞,w′
i
/kn,w′

i
), E(K∞,w′

i
)[p∞]) ∼=

ti⊕
j=1

Z/pmi,jZ. (19)

For any m ∈ N and wm|w0|v, H1(Gal(K∞,wm
/(Fn,m)wm

), E(K∞,wm
)[p∞]) is iso-

morphic to H1(Gal(K∞,w0
/(Fn,0)w0

), E(K∞,w0
)[p∞]). Letting Un,v be the Pontry-

agin dual of kerhn,v we therefore see that from (18), (19) and [37, Corollary A.8]
that we have an isomorphism

Un,v ∼=
c⊕
i=1

( ti⊕
j=1

Zp[[T ]]/pmi,j
)

We see from this that Un,v is a torsion Zp[[T ]]-module with λ-invariant λn,v =
0 and µ-invariant µn,v =

∑
w ordp(#H

1(Gal(K∞,w/Fn,w), E(K∞,w)[p∞])), where
the sum runs over all the primes w of kn dividing v (for any such w we have also
written w for a fixed place of K∞ (and Fn) above w). Since H 6= ∅, therefore
it follows that the decomposition group of a prime v of K∞ in Gal(K∞/K) has
Zp-rank at least one. So as v splits completely in F/k, it follows that the number
of primes of kn above v is bounded independently of n. Therefore we see from this
that µn,v is bounded independently of n.

Now let v ∈ S be a prime above p. By hypothesis, the decomposition group of
any prime of K∞ above p is an open subgroup of Gal(K∞/K). Therefore we can
write kerhn,v = ⊕w|v kerhn,w where hn,w : H1(Fn,w, E)[p∞] → H1(K∞,w, E)[p∞]
is the restriction map (as above, we have also written w for a fixed place of K∞
above w). We now determine the structure of kerhn,w as a Zp-module for any such
w above v. Let

κn,w : E(Fn,w)⊗Qp/Zp ↪→ H1(Fn,w, E[p∞]),

κw : E(K∞,w)⊗Qp/Zp ↪→ H1(K∞,w, E[p∞])

be the Kummer maps. Then the map hn,w is

hn,w : H1(Fn,w, E[p∞])/ img κn,w → H1(K∞,w, E[p∞])/ img κw.

Now let Cw = F(m̄)[p∞] where m̄ is the maximal ideal of K̄v and F is the formal
group of E. The inclusion Cw ⊆ E[p∞] induces maps

λn,w : H1(Fn,w, Cw)→ H1(Fn,w, E[p∞]),

λw : H1(K∞,w, Cw)→ H1(K∞,w, E[p∞]).

As H 6= ∅, it follows from [7, Theorem 2.13] that the extension K∞,w/Kv is deeply
ramified in the sense of [7]. Therefore by [7, Proposition 4.3] and the discussion
proceeding it we have img κw = img λw and img κn,w ⊆ img λn,w. Therefore hn,w
can be viewed as the composition of the following maps:

an,w : H1(Fn,w, E[p∞])/ img κn,w → H1(Fn,w, E[p∞])/ img λn,w,

bn,w : H1(Fn,w, E[p∞])/ img λn,w → H1(K∞,w, E[p∞])/ img λw.

We will now show that ker an,w and ker bn,w are both cofinitely generated over Zp.
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First we deal with ker bn,w. Let Ẽ be the reduction of E over the residue field
of K̄w. The exact sequence

0→ Cw → E[p∞]→ Ẽ[p∞]→ 0

induces an exact sequence

0→ img λn,w → H1(Fn,w, E[p∞])→ H1(Fn,w, Ẽ[p∞])→ 0.

The last map is surjective because cdp(Fn,w) ≤ 1 (see [48, Theorem 7.1.8(i)]).
Similarly, we have an exact sequence

0→ img λw → H1(K∞,w, E[p∞])→ H1(K∞,w, Ẽ[p∞])→ 0.

It follows that ker bn,w is isomorphic to H1(Gal(K∞,w/Fn,w), Ẽ[p∞]) which is
clearly cofinitely generated over Zp with corankZp(ker bn,w) ≤ 1.

Now we deal with ker an,w. Let L be finite extension of Kv contained in Fn,w.
First we note that Tate local duality [48, Theorem 7.2.6] together with the Weil
pairing yields a non-degenerate pairing

〈 , 〉 : H2(L, Tp(Cw))×H0(L, Ẽ[p∞])→ Qp/Zp,

where Tp(Cw) is the p-adic Tate module of Cw. If L′/L is a finite exten-
sion, let res : H2(L, Tp(Cw)) → H2(L′, Tp(Cw)) be the restriction map and

cor : H0(L′, Ẽ[p∞]) → H0(L, Ẽ[p∞]) be the corestriction (norm) map. For

a ∈ H2(L, Tp(Cw)) and b ∈ H0(L′, Ẽ[p∞]) a property of Tate local duality gives
〈res a, b〉 = 〈a, cor b〉. As above, we have maps

κL : E(L)⊗Qp/Zp ↪→ H1(L,E[p∞]),

λL : H1(L,Cw)→ H1(L,E[p∞]).

For any Hausdorff abelian locally compact topological group A, let Â denote its
Pontryagin dual. Taking into account [7, Proposition 4.5], the proof of [7, Propos-

ition 4.6] shows that we have an isomorphism θL : img λL/ img κL
∼−→ ̂Ẽ(kL)[p∞]

where kL is the residue field of L. Taking into account the property of Tate local
duality above and the description of the map θL we have an isomorphism

img λn,w/ img κn,w ∼= lim−→ img λL/ img κL ∼=
∧

lim←− Ẽ(kL)[p∞].

The limits are taken over all finite extensions L/Kv inside Fn,w/Kv; the direct
limits are taken with respect to restriction and inverse limits are taken with re-
spect to corestriction. As lim←− Ẽ(kL)[p∞] is a pro-p procyclic group, it is a quo-

tient of Zp (see [51, Proposition 2.7.1]). Therefore it follows from the isomorph-
ism above that ker an,w = img λn,w/ img κn,w is cofinitely generated over Zp with
corankZp(ker an,w) ≤ 1.

We get from the above that the kernel of hn,w = bn,w ◦ an,w is cofinitely gen-
erated over Zp with corankZp

(kerhn,w) ≤ 2. By hypothesis, the decomposition
group of any prime of K∞ above p is an open subgroup of Gal(K∞/K). It follows
that the number of primes w of Fn above v is finite and bounded by an integer
M > 0. Therefore kerhn,v =

⊕
w|v kerhn,w is cofinitely generated over Zp with

corankZp
(kerhn,v) ≤ 2M . We see from this that the Pontryagin dual of hn,v is a
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torsion Zp[[T ]]-module with µ-invariant zero and λ-invariant at most 2M . This
completes the proof. �

In order to finish the proof of Theorem 6.3, it remains to prove the following

Lemma 6.9. The constants from Lemma 6.6 have the following arithmetic mean-
ing.
(a) m1 = m1(H) is zero for all but finitely many choices of the dimension 1 sub-

group H of G, and the sum of the m1-invariants equals l0(X).
(b) If Xf is finitely generated over Λ(H), then l = rankΛ(H)(Xf ).

Proof. Going through the proof of [15, Theorem 2.4], one sees that m1(H) can
be described in a module-theoretic way, as follows: write the characteristic power
series fX ∈ Λ2 of X as f∞ = pµG(X) · g∞, where p - g∞, and consider the class g∞
of g∞ in Ω2 = Λ2/(p). Then we let

lH(X) =
∑
P
vP(g∞),

where P runs over the primes of Ω2 of the form P = (σ − 1), σ ∈ H \Hp (if g∞ = 0,
then we define lH(X) = 0). It has been shown in [15, Theorem 2.4] that

m1(H) = lH(X).

Assertion (a) now follows from [14, Lemma 1].
In order to prove assertion (b), we assume that X is finitely generated over Λ(H),

and we recall that Hn = Hpn for each n ∈ N. By a result of Harris (see [26]), we
have the asymptotic formula

rankZp((Xf )Hn) = rankΛ(H)(Xf ) · pn +O(1).

On the other hand, we have shown above that

rankZp((Xf )Hn) = λ(XHn) = λ(X/Yn)

satisfies the growth formula (15). Comparing coefficients proves that
l = rankΛ(H)(X). �

This also concludes the proof of Theorem 6.3, sinceW0 ⊆M is pseudo-isomorphic
to X. Indeed, W0 = ϕ(Y0) is pseudo-isomorphic to Y0, and the latter is pseudo-
isomorphic to X because the quotient X/Y0 is a finitely generated torsion Λ(G/H)-
module by the above, and thus is pseudo-null as a Λ2-module. �

Proof of Corollary 6.4. Following the proof of Monsky in [47], one can prove that
the hypothesis from the corollary is equivalent to saying that l0(X) = 0. The as-
sertion therefore follows from Lemma 6.9(a). �

7. characteristic power series and λ-invariants

The following short section is purely algebraic in nature. At the end of the section
we apply results of Monsky to our setting. We begin the section with the following
proposition that establishes a connection between parts (a) and (d) of Theorem 1.3.
Let X = X(E/K∞), and recall that f∞ = pm · g∞ ∈ Λ(G) denotes the character-
istic power series of X (and p - g∞). We also recall that Λ(G) ∼= Zp[[T,U ]], where
the two topological generators σ, τ ∈ G correspond to U + 1 and T + 1.
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Proposition 7.1. For any H = 〈σaτ b〉 ∈ H, X(E/K∞)f is finitely generated as a
Λ(H)-module if and only if either g∞ = 0 or g∞ 6= 0 and the image of g∞ in Λ2/p
is not divisible by the coset of Υ := (1 + U)a(1 + T )b − 1.

Proof. Suppose first that X(E/K∞)f is finitely generated over Λ(H) and g∞ 6= 0.
Then Theorem 5.1 implies that

µGn(X(E/K∞)) = µGn/Hn
(X(E/KHn

∞ ))

for every n ≥ 0. It follows from Theorem 6.3 that m1(H) = 0. As we have seen in
the proof of Lemma 6.9(a), this means that the image of g∞ in Ω2 = Λ2/p is not
divisible by the coset of Υ.

On the other hand, suppose that the cosets of g∞ and Υ in Ω2 are relatively
prime. If g∞ = 0, then X = X(E/K∞) is pseudo-null as a Λ2-module. Therefore
the quotient Xf of X is also pseudo-null, i.e. it has Krull dimension at most 1.
Moreover, multiplication by p is injective on Xf by definition. Therefore Xf/p is
finite by [1, Corollary 11.9], i.e. in this case Xf is a finitely generated free Zp-
module, and therefore in particular it is finitely generated as a Λ(H)-module.

Now we consider the case g∞ 6= 0. Let W be an elementary torsion Λ2-module
attached to Xf . Then we have an exact sequence

0 −→ A −→ Xf −→W, (20)

where A ⊆ Xf denotes the maximal pseudo-null submodule. Since multiplication
by p is injective on A ⊆ Xf , it follows as in the first case that A is finitely generated
over Λ(H). On the other hand, Lemma 2.2 implies that Xf/Υ is a torsion Λ(G/H)-
module, and we have seen in the proof of that lemma that the same follows for
W/Υ. Since the coset of g∞ in Ω2 is not divisible by Υ, it is immediate that
µG/H(W/Υ) = 0. Since W/Υ is a finitely generated and torsion Λ(G/H)-module,
it follows from the general structure theory that W/Υ is a finitely generated Zp-
module. Therefore W is finitely generated over Λ(H), and it follows from the exact
sequence (20) that the same holds true for Xf . �

For any α = [(a, b)] ∈ P1(Zp), we define Υα = (1 + U)a(1 + T )b − 1. With
this definition, if M is a finitely generated torsion Λ2-torsion module, we let
Mα = M/Υα. So Mα is a Λ2/Υα-module. Let fM be the characteristic power
series of M . If fM 6= 0 , write fM = pmgM with p - gM . We have the following
theorem of Monsky.

Theorem 7.2. Assume that fM 6= 0. Let α ∈ P1(Zp) and assume that Mα is a
torsion Λ2/Υα-module. Then the following statements are equivalent:
(a) λ(Mβ) is unbounded as β runs over a neighborhood of α,
(b) the image of gM in Λ2/p is divisible by the coset of Υα.

Proof. See [47, Theorem 3.3]. �

From this theorem, we can easily show

Proposition 7.3. Assume that f∞ 6= 0. Let H = 〈σaτ b〉 ∈ H. Then λ(X(E/L))
is bounded in a neighborhood of KH

∞ if and only if the image of g∞ in Λ2/p is not
divisible by the coset of (1 + U)a(1 + T )b − 1.

Proof. Let H ′ ∈ H. According to Proposition 2.8, the kernel and cokernel of the
map X(E/K∞)H′ → X(E/KH′

∞ ) are finite. Therefore, considering both the domain
and codomain as Λ(G/H ′)-modules, we see that their λ-invariants are the same.
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Taking Proposition 2.5 into account, the desired result follows from the previous
theorem. �

8. The Λ(H)-structure of X(E/K∞)f and proof of theorem 1.3

Let H ∈ H. In this section, assuming that X(E/K∞)f is finitely generated over
Λ(H), we determine its structure as a Λ(H)-module. Moreover, we glue together
the results from the preceding sections to a proof of our main result.

The two key ingredients we need are Theorem 8.1 below and Proposition 4.2.

Theorem 8.1. Let H ∈ H and assume that X(E/K∞)f is finitely generated over
Λ(H). Then for any n ≥ 1 we have

rankZp
(X(E/KHn

∞ )f ) = pn rankZp
(X(E/KH

∞)f ).

Proof. For simplicity, let Fn = KHn
∞ with F = F0. Note that since X(E/K∞)f is

finitely generated over Λ(H), therefore by Lemma 2.10, for any n ≥ 0, X(E/Fn) is
a torsion ΛKn

-module so X(E/Fn)f is a finitely generated Zp-module. This makes
sense of the statement in the theorem. For any n ≥ 0 the dual of the map sn in
Proposition 2.8 induces a map θn : (X(E/K∞)f )Hn → X(E/Fn)f . As X(E/K∞)f
is finitely generated over Λ(H), Proposition 4.2 shows that ker θn and coker θn are
finite. Therefore

rankZp(X(E/Fn)f ) = rankZp((X(E/K∞)f )Hn). (21)

Since X(E/K∞)f is finitely generated over Λ(H), it is finitely generated over
Λ(Hn) and from Lemma 2.14 we get that H1(Hn, X(E/K∞)) = 0. Now,
X(E/K∞)f ∼= pmX(E/K∞) for some m > 0 and so X(E/K∞)f is a submodule
of X(E/K∞). Therefore, H1(Hn, X(E/K∞)f ) = 0 since H1(Hn, X(E/K∞)) = 0
and cdp(H) = 1. It then easily follows from this and the structure theorem of
X(E/K∞)f as a Λ(Hn)-modules that

rankΛ(Hn)(X(E/K∞)f ) = rankZp((X(E/K∞)f )Hn). (22)

The theorem now follows from (21) and (22) because for any n we have

rankΛ(Hn)(X(E/K∞)f ) = pn rankΛ(H)(X(E/K∞)f ).

�

Remark. Suppose that H ∈ H and that X(E/K∞)f is finitely generated over Λ(H),
as in Theorem 8.1. Then Lemma 2.10 implies that X(E/KHn

∞ ) is a torsion ΛKn
-

module for every n ∈ N. Therefore it follows from Theorem 6.3 that

rankZp
(X(E/KHn

∞ )f ) = pn · rankΛ(H)(X(E/K∞)f ) +O(1)

for every n ∈ N. Theorem 8.1 provides a stronger statement, namely we get rid off
the O(1) error term. This follows by combining the statement of the theorem with
equations (21) and (22), both applied with n = 0.

In the introduction, we defined λH to be the λ-invariant of the Λ(G/H)-module
X(E/KH

∞). Note: If X(E/K∞)f is finitely generated over Λ(H), it follows from
Theorem 6.3(c) and Theorem 8.1 (alternatively, from the proof of Proposition 4.2)
that

λH = rankΛ(H)(X(E/K∞)f ),

provided that the latter is finite. We can now prove the following
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Theorem 8.2. Assume that E(K∞)[p∞] is finite and X(E/K∞)f is finitely gen-
erated over Λ(H), then we have an injective Λ(H)-homomorphism

X(E/K∞)f ↪→ Λ(H)λH

with finite cokernel and a Λ2-exact sequence

0→ A→ X(E/K∞)→
s⊕
i=1

Λ2/f
ni
i ⊕

t⊕
j=1

Λ2/p
mj → B → 0

where s ≤ λH , A and B are pseudo-null Λ2-modules with A annihilated by some
power of p, fi ∈ Λ2 \ Λ(H) are irreducible power series and µG(X(E/K∞)) =∑t
j=1mt.

Proof. Assume that E(K∞)[p∞] is finite and that X(E/K∞)f is finitely generated
over Λ(H). By Proposition 4.3 and Proposition 4.2 we get that the maps

θn : (X(E/K∞)f )Hn
→ X(E/KHn

∞ )f

have finite kernel and cokernel and their orders are bounded independently of n.
Recall that λH is the same as rankZp

(X(E/KH
∞)f ). Taking into account Theorem

8.1, from the control theorem above we get that (X(E/K∞)f )Hn
∼= (Zp)p

nλH ×Cn
where Cn is finite. Because ker θn has bounded order and X(E/KHn

∞ )f is Zp-
torsion-free, it follows that the order of Cn is bounded independently of n.

From the structure theorem of modules over Λ(H)(∼= Zp[[X]]), we see that
X(E/K∞)f is pseudo-isomorphic to Λ(H)λH . Since X(E/K∞)f is Zp-torsion-free,
it cannot have any non-trivial finite submodules. So we have a Λ(H)-exact sequence

0→ X(E/K∞)f → Λ(H)λH → C (23)

where C is finite. This proves the first statement.
Now we prove the second statement. First we note that X(E/K∞)f has no

nonzero pseudo-null Λ2-submodules. To see this, assume that G is a pseudo-null
Λ2-submodule of X(E/K∞)f . Then G has Krull dimension at most one. Since
multiplication by p is injective on G ⊆ X(E/K∞)f , therefore by [1, Corollary 11.9]
G/p is finite i.e. G is finitely generated over Zp. So G is torsion as a Λ(H)-module.
The exact sequence (23) shows that X(E/K∞)f is Λ(H)-torsion free. Therefore
G = 0.

Now we determine the structure of X(E/K∞)f as a Λ2-module. Taking into
account Lemmas 2.9 and 2.1, we have by [5, Chapt. VII, §4.4 Theorem 5], that
there exist irreducible power series fj ∈ Λ2

∼= Zp[[T,U ]], integers mi, nj and a
Λ2-exact sequence

0→W → X(E/K∞)f → D → 0

where W =
⊕s

i=1 Λ2/f
ni
i and D is a pseudo-null Λ2-module. From the exact

sequence (23) we have that X(E/K∞)f is Λ(H)-torsion free. This implies that
for all i we have fi /∈ Λ(H). Furthermore, the exact sequence (23) shows that
rankΛ(H)(X(E/K∞)f ) = λH . Since for any i we have rankΛ(H)(Λ2/f

ni
i ) ≥ 1,

therefore we see that s ≤ λH .
Since both X(E/K∞)f and W are torsion Λ2-modules and taking into account

the fact shown above that X(E/K∞)f has no nonzero pseudo-null Λ2-submodules,
we also have a Λ2-exact sequence

0→ X(E/K∞)f →W → D′ → 0 (24)
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where D′ is a pseudo-null Λ2-module.
The prime ideals of height one in the support of X(E/K∞)[p∞] (which is only

〈p〉) are disjoint from the prime ideals of height one in the support of X(E/K∞)f .
Therefore as explained in [48, Remark 2, p. 271] we have a Λ2-pseudo-isomorphism
X(E/K∞) ∼ X(E/K∞)[p∞]⊕X(E/K∞)f . From this we see that the second state-
ment of the theorem follows from the exact sequence (24). The fact that the pseudo-
null Λ2-module A is annihilated by a power of p can be seen as follows: Let π(A)
be the image of A under the projection map π : X(E/K∞) → X(E/K∞)f . Then
π(A) is a pseudo-null submodule of X(E/K∞)f . Since as shown above X(E/K∞)f
has no nonzero pseudo-null Λ2-submodules, therefore π(A) = 0. This implies that
the group A in the second statement is contained in X(E/K∞)[p∞] and hence is
annihilated by a power of p. �

We need one last result

Theorem 8.3. Assume that H is not empty. If E(K)[p] = 0, then X(E/K∞) has
no nontrivial pseudo-null Λ2-submodules.

Proof. This theorem follows from the work of Greenberg [21]. See [38, Proposition
6.1] for details. �

Proof of Theorem 1.3. X(E/K∞) is Λ2-torsion by Lemma 2.9.
(a) ⇒ (b) and (c) Lemma 2.10 and Theorem 5.1, noting that, since Λ(G) is a free
Λ(Gn)-module of rank pn, we have pnµG(X(E/K∞)) = µGn(X(E/K∞)).

(b)⇒ (a) Corollary 5.2
(c)⇒ (b) Clear
(f)⇒ (a) Clear
(a)⇔ (d) Proposition 7.1
(d) ⇔ (e) If f∞ = g∞ 6= 0 use Proposition 7.3. If f∞ = 0, then X(E/K∞)

is a pseudo-null Λ2-module. As in the proof of Proposition 7.1, this implies that
X(E/K∞)f ⊆ X(E/K∞) is a finitely generated free Zp-module; we let r denote its
rank. For anyH ∈ H we have thatX(E/K∞)f is finitely generated over Λ(H). Pro-
position 4.2 implies that the restriction map θ0 : (X(E/K∞)f )H −→ X(E/KH

∞)f
has finite kernel and cokernel. In particular, rankZp

(X(E/KH
∞)f ) = r for each

H ∈ H. Taking Proposition 2.5 into account, we get (e).
Assuming that E(K∞)[p∞] is finite we get
(a)⇒ (f) Theorem 8.2.
The statement about pseudo-null submodules is Theorem 8.3. �

Proof of Proposition 1.4. Let Ω2 = Λ2/pΛ2(∼= Fp[[T,U ]]). This is a UFD, so by
Theorem 1.3(d), we only need to prove the following statement: If [(a, b)] and [(c, d)]
are two distinct elements of P1(Zp), then σaτ b−1 and σcτd−1 are relatively prime
elements of Ω2. This can be proven in the same way as Lemma 2.4. �

9. Bounding ranks

In the next two sections, we derive the applications of our main theorem which
we announced in the introduction. We consider an imaginary quadratic base field
K, so that the Z2

p-extension K∞/K is just the composite of all Zp-extensions of K.
In this section we prove Theorem 1.5 on Mazur’s Conjecture. First we need

Lemma 9.1. If L/K is a Zp-extension with X(E/L) a torsion Λ-module, then the
rank of E is bounded in L/K.
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Proof. Let Ln be a tower field of the extension L/K with corresponding sub-
group Γn. Since rankZp(X(E/L)Γn) is bounded independently of n and we have
an injection E(Ln)⊗Qp/Zp ↪→ Selp∞(E/Ln), it suffices to show that the map
sn : Selp∞(E/Ln)→ Selp(E/L)Γn has finite kernel. ker sn is contained in the kernel
of the map gn : H1(Ln, E[p∞])→ H1(L,E[p∞])Γn . We have

ker gn = H1(Γn, E(L)[p∞]) = coker(E(L)[p∞]
γ−1−−−→ E(L)[p∞])

where γ is a topological generator of Γn. This group is finite because

ker(E(L)[p∞]
γ−1−−−→ E(L)[p∞]) = E(K)[p∞] is finite. �

Proof of Theorem 1.5. The proof uses a technique from the paper of Bloom and
Gerth [4]. Let H ∈ Σ and denote KH

∞ by F . We must show that t ≤ λH . First
we note that the rank of E stays bounded in F . This follows from Lemma 9.1
since X(E/F ) is a torsion Λ-module (because H ∈ H). Now we make the following
claim: It suffices to show that the number of Zp-extensions disjoint from F where
the rank of E does not stay bounded is at most λH . To see this, suppose that
we have λH + 1 Zp-extensions of K L1, L2, ..., LλH+1 where the rank of E does
not stay bounded. By what we just mentioned, none of these extensions equals F .

Therefore
⋃λH+1
i=1 (F ∩Li) = Km where Km is a finite extension of K. Now for each

i = 1, ..., λH + 1 let L′i = LiKm. Then the fields L′i are λH + 1 Zp-extensions of Km

that are disjoint from F/Km and the rank of E does not stay bounded in each L′i.
However, the proof below can easily be adapted replacing K by Km to show that
the number of Zp-extension of Km inside K∞ disjoint from F/Km where the rank
of E does not stay bounded is at most λH . This proves the claim.

By the claim above and Lemma 9.1, we only need to show that the number of Zp-
extensions L/K disjoint from F where rankΛ(X(E/L)) > 0 is at most λH . Choose σ
and τ to be topological generators of G = Gal(K∞/K) such that H = Gal(K∞/F )
is topologically generated by τ . Then the Zp-extensions of K disjoint from F are

the fixed fields of 〈στa〉 for a ∈ Zp. The Iwasawa algebra Λ(G) is isomorphic to
Zp[[T,U ]] via an isomorphism that takes σ to U + 1 and τ to T + 1.

Let L/K be a Zp-extension disjoint from F with rankΛ(X(E/L)) > 0. L is the

fixed field of 〈στa〉 for a ∈ Zp:

K∞
〈στa〉 〈τ〉

L F

K

Consider the map s : Selp∞(E/L) → Selp∞(E/K∞)〈στ
a〉. We have that ker s is

contained in

H1(Gal(K∞/L), E(K∞)[p∞]) = ker(H1(L,E[p∞])→ H1(K∞, E[p∞])).

As H1(Gal(K∞/L), E(K∞)[p∞])) is clearly cofinitely generated over Zp, it fol-
lows that ker s is also cofinitely generated over Zp. Dualizing everything, we get
that the cokernel of the map ŝ : X(E/K∞)/(στa − 1)X(E/K∞) → X(E/L) is fi-
nitely generated over Zp. Since rankΛ(X(E/L)) > 0, therefore the Qp-vector space
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X(E/L)⊗Zp
Qp has infinite dimension so

(X(E/K∞)f/(στ
a − 1)X(E/K∞)f )⊗Zp

Qp ∼= (X(E/K∞)/(στa − 1)X(E/K∞))⊗Zp
Qp

has infinite dimension as well.
Since H ∈ Σ, therefore X(E/K∞)f/(στ

a− 1)X(E/K∞)f is a finitely generated
Λ(H)-module and by the above we see that it must have positive Λ(H)-rank. Let
Q(Λ(H)) be the field of fractions of Λ(H) and V (E/K∞) = X(E/K∞)f ⊗Λ(H)

Q(Λ(H)). So we see that there must be nonzero z ∈ V (E/K∞) such that

0 = (στa − 1)z = [(1 + U)(1 + T )a − 1]z.

This implies

Uz = [(1 + T )−a − 1]z.

Thus (1 +T )−a− 1 is an eigenvalue of the endomorphism U of the Q(Λ(H))-vector

space V (E/K∞). So if L is the fixed field of 〈στa〉 and rankΛ(X(E/L)) > 0,
then (1 + T )−a − 1 is an eigenvalue of the endomorphism U of V (E/K∞). The
number of eigenvalues is at most dimQ(Λ(H))(V (E/K∞)) and so to complete the
proof it will suffices to show that dimQ(Λ(H))(V (E/K∞)) ≤ λH . Under the as-
sumption that E(K∞)[p∞] is finite, this would follow from Theorem 1.3(f). How-
ever the condition that E(K∞)[p∞] is finite is not needed, since Proposition 4.2
shows that the map θ : (X(E/K∞)f )H → X(E/KH

∞)f has finite kernel. Therefore,
rankΛ(H)(X(E/K∞)f ) ≤ λH . This completes the proof. �

We end this section by making some observations about Mazur’s conjecture
(listed in the introduction) in the cases when rank(E(K)) = 0, 1. First, we list a
few useful relations that will we will need. Let E(K) be the quadratic twist of E by
K. From [49, Lemma 3.1] we have

rank(E(K)) = rank(E(Q)) + rank(E(K)(Q)). (25)

If p is odd, we have

Selp∞(E/K) ∼= Selp∞(E/Q)⊕ Selp∞(E(K)/Q), (26)

X(E/K)[p∞] ∼= X(E/Q)[p∞]⊕X(E(K)/Q)[p∞]. (27)

If p is odd and Qcyc is the cyclotomic Zp-extension of Q, then the exten-
sions Qcyc/Q and K/Q are disjoint. Therefore we may identify the Galois groups
Gal(Qcyc/Q) = Gal(Kcyc/K) = Γcyc. Similar to (26), we get from loc. cit. the
following

Lemma 9.2. Assume that p is odd. Then we have an isomorphism of Γcyc-modules

Selp∞(E/Kcyc) ∼= Selp∞(E/Qcyc)× Selp∞(E(K)/Qcyc).

Also, we have the following relationship between L-functions

L(EK , s) = L(E, s)L(E(K), s). (28)

If Selp∞(E/K) is finite, then the above relations together with the proven parity
conjecture ([16]) allow us to deduce that the root number of L(EK , s) is 1 as follows:
First, by (26) both Selp∞(E/Q) and Selp∞(E(K)/Q) are finite. Then from [16,
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Theorem 1.4] we have that the root numbers of L(E, s) and L(E(K), s) are both 1.
It then follows from (28) that the root number of L(EK , s) is also 1.

We will continue to assume that E has good ordinary reduction at p. In the
rank(E(K)) = 0 case we have the following theorem.

Theorem 9.3. Assume that p is odd. If rank(E(K)) = 0 and X(E/K)[p∞] is
finite, then Mazur’s conjecture is true.

Proof. We have that Selp∞(E/K) is finite. As explained above this implies that
the root number of L(EK , s) is 1. So Mazur’s conjecture predicts that in this case
the rank of E stays bounded along every Zp-extension of K.

We now show this. Let L be a Zp-extension of K with Γ = Gal(L/K). By
Mazur’s control theorem ([44] or [19, Theorem 1.2]) the map (induced by restriction)

Selp∞(E/K)→ Selp∞(E/L)Γ

has finite kernel and cokernel. Therefore, as Selp∞(E/K) is finite, it follows that
Selp∞(E/L)Γ is finite. This implies by the structure theorem for X(E/L) as a Λ-
module that X(E/L) is a torsion Λ-module. The desired result then follows from
Lemma 9.1. �

Now we deal with the case rank(E(K)) = 1. In this case, we combine res-
ults of Kundu-Ray [39] together with Theorem 1.5 to prove Mazur’s conjecture
under various assumptions. Let us first fix some notation. For an elliptic curve
E′/Q, let Rp(E

′/Q) be the p-adic regulator. Recall that if rank(E′(Q)) = 0, then
Rp(E

′/Q) = 1. Also, for any rational prime l we let cl(E
′) be the Tamagawa num-

ber of E′ at l. Let N be the conductor of E. The result in this case is

Theorem 9.4. Assume that p is odd and unramified in K/Q. Also assume that
rank(E(K)) = 1, X(E/K)[p∞] = 0, vp(Rp(E/Q)Rp(E

(K)/Q)) ≤ 1 and all the
primes dividing N split in K/Q. Furthermore, suppose that p does not divide any
of the following

(1)
∏
l cl(E) · cl(E(K)),

(2) #Ẽ(Fp) ·#Ẽ(K)(Fp).

Then Mazur’s conjecture is true.

Proof. Note that rank(E(K)) = 1 implies by (25) that rank(E′(Q)) = 1 for pre-
cisely one of E′ = E or E(K). Therefore vp(Rp(E/Q)Rp(E

(K)/Q)) ≤ 1 is the same
as saying that vp(Rp(E

′/Q)) ≤ 1.
Since all the primes dividing N split in K/Q, therefore the root number of

L(EK , s) is −1. So Mazur’s conjecture predicts that in this case the rank of E stays
bounded along every Zp-extension of K except the anticyclotomic one. Let Kac be
the anticyclotomic Zp-extension of K with tower fields Kac,n. Using Theorem 1.4 of
[56] together with the main result of [3] it follows that rank(E(Kac,n)) = pn+O(1),
so the rank of E is in fact unbounded along the anticyclotomic Zp-extension of K.

Let E1, E2 ∈ {E,E(K)} with rank(E1(Q)) = 1 and rank(E2(Q)) = 0. Tak-
ing (27) into account, the conditions of the theorem together with [39, Theor-
ems 3.7 and 3.13] imply that Selp∞(E2/Qcyc) = 0 and the Pontryagin dual of
Selp∞(E1/Qcyc) has µ-invariant zero and λ-invariant one. Therefore by Lemma 9.2
µ(X(E/Kcyc)) = 0 and λ(X(E/Kcyc)) = 1. The fact that µ(X(E/Kcyc)) = 0
implies by Proposition 2.8 that X(E/K∞)Hcyc

is finitely generated over Zp. So
X(E/K∞) is finitely generated over Λ(Hcyc) whence also X(E/K∞)f is finitely
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generated over Λ(Hcyc). Therefore by Theorem 1.5 the number of Zp-extensions of
K where the rank of E does not stay bounded is at most λ(X(E/Kcyc)) = 1. This
completes the proof. �

We now list some examples satisfying Theorem 9.4. The following computations
were done in SAGE [54].

• Let E = 43a1 (Cremona labeling [11]) and K = Q(
√
−3). One can choose

p = 11, 13, 17, 19.
• Let E = 58a1 and K = Q(

√
−7). One can choose p = 5, 11, 13, 17.

• Let E = 61a1 and K = Q(i). One can choose p = 5, 11, 17, 19.

10. Deriving the triviality of the µ-invariant for the cyclotomic
Zp-extension from the vanishing of the µ-invariant for the

anticyclotomic one

In this section we let K∞ be the Z2
p-extension of an imaginary quadratic field

K. Recall that Kcyc,Kac ⊆ K∞ denote the cyclotomic and anticyclotomic Zp-
extensions of K. The main goal of this section is to prove Theorem 10.8, which
establishes a connection between the MH(G)-conjecture and Greenberg’s Conjec-
ture from the introduction.

We begin this section by recalling the definition of the component group and
Tamagawa number of an abelian variety (at a prime):

Definition 10.1. Let A be an abelian variety defined over L, a finite extension of
Qp (p a prime), let A be the Néron model of A over the ring of integers of L and let
k be the residue field of L. Let Ak be the special fiber of A and A0

k its connected
component of the identity. The group ΦA = Ak/A0

k of connected components is a
finite étale group scheme over k. This group scheme is called the component group
of A, and the Tamagawa number of A is cA = #ΦA(k).

Now suppose that A is an abelian variety over a number field L, then for any
non-archimedean prime v of L the Tamagawa number of A at v, denoted cA,v or
simply cv, is the Tamagawa number of ALv , where Lv is the completion of L at v.

Proposition 10.2. Let A be an abelian variety defined over L, a finite extension
of Qp (p some prime). If L′/L is an unramified extension, k′ the residue field of
L′ and G = Gal(L′/L), then: H1(G,A(L′)) = H1(G,ΦA(k′)).

Proof. See [44, Prop. 4.3]. �

Let Hcyc = Gal(K∞/Kcyc), Hac = Gal(K∞/Kac), Γcyc = Gal(Kcyc/K) and
Γac = Gal(Kac/K). We denote the Iwasawa algebras of Γcyc and Γac by Λcyc and
Λac, respectively. Let X(E/Kac) be the Pontryagin dual of Selp∞(E/Kac) and let
N be the conductor of E. We say that (E, p) satisfies (?) if N is relatively prime
to the discriminant of K and for any prime v of K lying above a rational prime q
dividing N that is inert in K/Q we have p - cv.

Proposition 10.3. Assume that (E, p) satisfies (?) and that X(E/Kac) is a torsion
Λac-module. Then µΓac(X(E/Kac)) = 0 implies that µG(X(E/K∞)) = 0.

Proof. Assume that (E, p) satisfies (?), X(E/Kac) is a torsion Λac-module and
µΓac(X(E/Kac)) = 0. Let L/K be a finite subextension of K∞/K disjoint
from Kac/K. We define Lac := LKac and identify Γac with Gal(Lac/L). Let
H = Gal(Lac/Kac). By a similar line of proof as [22, Corollary 3.4] we now
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show that X(E/Lac) is a torsion Λac-module with µ = 0. We claim that the
map φ : Selp∞(E/Kac)→ Selp∞(E/Lac)

H has finite kernel and cokernel.
For this proof we fix S to be the set of all primes of K dividing Np. We first note

that since all primes of K above p ramify in Kac/K, there are a finite number of
primes of Kac above p. Also by [2, Theorem 2] there are a finite number of primes
of Kac above any prime l dividing N that splits in K/Q. However any prime v of K
lying over a prime l dividing N that is inert in K/Q will split completely in Kac/K.
Let {Kac,m}m∈N be the tower fields of the Zp-extension Kac/K and let S′m be the
set of primes of Kac,m lying above a prime l dividing N that is inert in K/Q. From
the previous observations it follows as in the proof of Proposition 2.8 (see also the
case when a prime v of k splits completely in F/k in the proof of Proposition 6.8),
that to prove the claim, it will suffice to show that for any m ∈ N and any prime
w ∈ S′m we have that H1(Gal(Lac,w/(Kac,m)w), E(Lac,w)[p∞]) = 0, where we have
also written w for a fixed prime of Lac above w.

Let m ∈ N and w ∈ S′m. By [7, Prop. 4.1] it follows that
H1(Gal(Lac,w/(Kac,m)w), E(Lac,w)[p∞]) = H1(Gal(Lac,w/(Kac,m)w), E(Lac,w)).
By Proposition 10.2 H1(Gal(Lac,w/(Kac,m)w), E(Lac,w)) =
H1(Gal(Lac,w/(Kac,m)w),ΦE(lw)) = H1(Gal(Lac,w/(Kac,m)w),ΦE(lw)[p∞])
where lw is the residue field. The last equality follows from the fact
that Gal(Lac,w/(Kac,m)w) is pro-p. Since (E, p) satisfies (?), therefore

ΦE(lw)[p∞]Gal(Lac,w/Kw) = ΦE(kw)[p∞] = 0 (kw be the residue field of Kw).
Therefore ΦE(lw)[p∞] = 0 and so H1(Gal(Lac,w/(Kac,m)w), E(Lac,w)[p∞]) =
H1(Gal(Lac,w/(Kac,m)w),ΦE(lw)[p∞]) = 0 as desired. Thus we have now shown
that kerφ and cokerφ are finite.

Since X(E/Kac) is a torsion Λac-module with µ = 0, therefore it is a finitely
generated Zp-module. So since cokerφ is finite, this implies that the H-coinvariants
of X(E/Lac) are finitely generated over Zp. Therefore by Nakayama’s lemma
X(E/Lac) is finitely generated over Zp[H]. In particular, X(E/Lac) is finitely
generated over Zp. This implies that X(E/Lac) is a torsion Λac-module with µ = 0.

As K∞ contains Kcyc, therefore by Proposition 2.6 it follows that H 6= ∅. Also
by [46, Lemma 3.1], the decomposition group of any prime w of K∞ above p is
an open subgroup of Gal(K∞/K). These facts allow us to apply Theorem 6.3.
In the notation of Theorem 6.3 what we proved above gives that µn = 0 for all n.
Therefore by equation (14) we can conclude that µG(X(E/K∞)) = 0 as desired. �

We now need the following important theorem on the vanishing of the µ-invariant
of X(E/Kac) which is due to Pollack and Weston.

Theorem 10.4. Let p ≥ 5 be a prime where E has good ordinary reduction and
assume that the discriminant of K is relatively prime to pN . Write N = N+N−

where all the prime divisors of N+ (respectively N−) are split (respectively inert)
in K/Q. Assume that N− is a squarefree product of an odd number of primes.
Furthermore, suppose that

(1) If p ≥ 7, then E[p] is an irreducible Gal(Q(E[p])/Q)-module and if p = 5,
then Gal(Q(E[p])/Q) = GL2(Fp).

(2) If q | N− and q ≡ ±1 (mod p), then q ramifies in Q(E[p])/Q.
(3) ap 6≡ ±1 (mod p).

Then X(E/Kac) is a torsion Λac-module with µ-invariant zero.

Proof. See [50, Theorem 1.1] and [31, Corollary 2.3]. �
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Lemma 10.5. Assume that p ≥ 5. Let q be a rational prime dividing N that is
unramified in K/Q. The following are equivalent:

(a) The Kodaira type of E at q is In with p | n
(b) q does not ramify in Q(E[p])/Q
(c) p | cv for any prime v of K above q.

Proof. From [29, Theorem 1.1] we get the equivalence of (a) and (b). By [55,
pg. 448] we have that p | cv if and only if the Kodaira type of E and v is Im
with p | m. Therefore the equivalence of (a) and (c) follows from [30, Table 1 on
pg. 556-557]. �

From Theorem 10.4 and Lemma 10.5 we get

Corollary 10.6. Let p ≥ 5 be a prime where E has good ordinary reduction and
assume that the discriminant of K is relatively prime to pN . Write N = N+N−

where all the prime divisors of N+ (respectively N−) are split (respectively inert)
in K/Q. Assume that N− is a squarefree product of an odd number of primes.
Furthermore, suppose that

(1) If p ≥ 7, then E[p] is an irreducible Gal(Q(E[p])/Q)-module and if p = 5,
then Gal(Q(E[p])/Q) = GL2(Fp)

(2) N− is the product of all primes q dividing N such that the Kodaira type of
E at q is In with p - n

(3) ap 6≡ ±1 (mod p).

Then X(E/Kac) is a torsion Λac-module with µ-invariant zero. Moreover, (E, p)
satisfies (?), i.e. for any prime v of K dividing N− we have p - cv.

Combining the above corollary with Proposition 10.3 and Theorem 1.3, we get

Theorem 10.7. Suppose the assumptions of Corollary 10.6 are met, and
further assume that X(E/K∞)f is finitely generated over Λ(Hcyc). Then
µΓcyc

(X(E/Kcyc)) = 0.

We can now prove the following result, which we alluded to in the introduction.

Theorem 10.8. Assume that X(E/K∞)f is finitely generated over Λ(Hcyc) for all
quadratic imaginary fields K, all elliptic curves E/Q and all primes p ≥ 5. Under
this assumption, let p ≥ 5 be a prime and E/Q an elliptic curve with conductor N
having good ordinary reduction at p. Suppose that

(1) If p ≥ 7, then E[p] is an irreducible Gal(Q(E[p])/Q)-module and if p = 5,
then Gal(Q(E[p])/Q) = GL2(Fp)

(2) The number of primes q dividing N , such that the Kodaira type of E at q
is In with p - n is odd

(3) ap 6≡ ±1 (mod p)

Then Selp∞(E/Qcyc) is Λ-cotorsion with µ-invariant zero. Here, Qcyc is the cyclo-
tomic Zp-extension of Q.

Proof. X(E/Qcyc) is a torsion Λcyc-module by the results of Kato [32] and Rohrlich
[52]. Under the assumptions in the statement of the theorem, let N− be the product
of all primes q dividing N such that the Kodaira type of E at q is In with p - n.
Let N+ = N/N−. We may apply the Chinese remainder theorem to obtain an
imaginary quadratic field K such that all the prime divisors of N+ (respectively
N−) are split (respectively inert) in K/Q. The desired result now follows from
Theorem 10.7 and Lemma 9.2. �
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11. Shifting the MH(G)-property

In this final subsection we prove a result on the shifting of the MH(G)-conjecture.
Let K∞ be a Z2

p-extension of a number field K, and let E be an elliptic curve
defined over K. If p = 2, then we will always assume K to be totally imaginary.
In this section, we want to derive from the MH(G)-property for E over K (i.e. the
condition that X(E/K∞)f is finitely generated over Λ(H), H = Gal(K∞/Kcyc))
that the same property holds for each suitable finite p-extension K ′ of K such
that K ′ ∩K∞ = K (for the hypotheses which have to be satisfied we refer to The-
orem 11.9 below).

The main result of this section is Theorem 11.9 where we consider, more gen-
erally, arbitrary groups H ∈ H instead of H = Gal(K∞/Kcyc) (here H is defined
as in the introduction), i.e. we do not assume that K∞ contains Kcyc. To this
end, we use the equivalent formulations of the MH(G)-property from Theorem 1.3,
and in particular parts (b) and (e): under the hypothesis that the λ-invariants
of the Pontryagin duals X(E/L) are bounded as L runs over the Zp-extensions
of K which are contained in K∞ and coincide with F = KH

∞ up to at least a
certain layer, we want to prove that a similar statements holds true for the shif-
ted Zp-extensions L′/K ′, where L′ = L ·K ′. Alternatively, under the assumption
that µG(X(E/K∞)) = µ(X(E/F )), we prove that an analogous equality holds for
F ′ ⊆ K ′∞.

The task of shifting the MH(G)-property turned out to be much more involved
than we would have thought at first glance. We cannot prove this result without
assuming that several additional hypotheses are satisfied. In the course of the proof
we will explain where these hypotheses are used.

In the following, we denote by ∆ the Galois group of K ′ over K, which is a finite
p-group. As in the introduction, we denote by E⊆K∞(K) the set of all Zp-extensions
of K which are contained in K∞.

We summarise the fields under consideration in the following diagram.

K ′∞

H

F ′ K∞

H

G∼= Z2
pK ′

∆

F = KH
∞

K

We start with the following lemma.

Lemma 11.1. Suppose that ∆ is a finite p-group. There exists a neighbourhood
U ⊆ E⊆K∞(K) of F such that the kernel and the cokernel of the natural map

sL : Selp∞(E/L) −→ Selp∞(E/L′)∆

are finite and of bounded order as L runs over the elements in U .

Proof. Since H ∈ H, we know that no prime of S splits completely in F/K and
that every prime of K above p ramifies in F/K. We therefore can pick a layer Fn
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(n > 0) such that the primes of Fn above S do not split at all in F/Fn and that
every prime of K above p ramifies in Fn/K. Let U contain only the Zp-extensions
L ⊆ K∞ of K which coincide with F at least up to layer n+ 1. Then for any L ∈ U
we have:

(i) The number of primes of L above S is finite and bounded on U .
(ii) Every prime of K above p ramifies in L/K.

Taking into account the properties (i) and (ii) above, we see by arguments similar
to those used in the proof of Proposition 2.8, using the snake lemma, that it suffices
to bound the cohomology groups Hi(∆, E(L′)[p∞]) for i = 1, 2, and the local
cohomology groups H1(L′w/Lv, A) where w | v runs over the primes of L′ and L

above S, A = E(L′w)[p∞] if w does not lie above p and A = Ẽ(l′w)[p∞] if w does lie
above p; here l′w is the residue field of L′w.

Now each of the groups E(L′)[p∞] is cofinitely generated over Zp of rank at most
two. Since all the cohomology groups Hi(∆, E(L′)[p∞]) are annihilated by |∆|, it
follows that each of these cohomology groups is actually finite, and that their orders
are bounded as L runs over the elements from U . A similar argument shows that
H1(L′w/Lv, A) is finite of bounded order. �

Dualising, we obtain the following

Corollary 11.2. Let m ∈ N, and let U be as in Lemma 11.1. Then the kernels
and the cokernels of the maps

ϕL : X(E/L′)∆ −→ X(E/L)

are finite and of bounded order as L runs over the elements in U .

In what follows, we will repeatedly use the following auxiliary result. The main
reason for hypothesis (3) in Theorem 11.9 is that we cannot prove the following
technical result without posing additional assumptions on Z, and condition (3)
seems the most natural condition under which this result holds true (cf. also the
remark after Lemma 11.3).

Lemma 11.3. Let Z be a Zp[∆]-module such that pZ = 0, and write |∆| = pr.
Assume that Z∆ is finite. Then Z is finite and

vp(|Z|) ≤ prvp(|Z∆|). (29)

Proof. Choose x1, x2, ..., xn ∈ Z such that their images in Z∆ form an Fp-basis
of Z∆. Then by Nakayama’s lemma x1, x2, ..., xn generate Z as an Fp[∆]-module.
Since |∆| = pr, the result follows. �

Remark. If pZ 6= 0, then the statement of Lemma 11.3 is wrong in general. In fact,
the cardinality of Z can be arbitrarily large even if we fix the cardinality of Z∆, by
the following example.1

Suppose that |∆| = p, let σ be a generator of ∆, and write

N = σp−1 + σp−2 + . . .+ σ + 1

for the norm element in the group ring Zp[∆]. Now let t ∈ N be arbitrary but fixed,
and define

Z := Zp[∆]/(pt, N).

1We are grateful to Cornelius Greither for explaining this example to us.
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Since Zp[∆]/(N) is a free Zp-module of rank p− 1, the cardinality of Z is equal to

pt(p−1), i.e. |Z| → ∞ as t→∞. On the other hand, we have

Z∆ = Zp[∆]/(pt, σ − 1, N) = Zp[∆]/(pt, σ − 1, p)

for any t, since N ≡ p(mod σ − 1). This shows that the cardinality of the quotient
of coinvariants is equal to p for any t.

In other words, although the cardinality of Z∆ is fixed, the cardinality of Z can
be arbitrarily large without further information on the action of ∆ on Z. This is
why we stick to the pZ = 0 case in all what follows.

Using the arguments from Proposition 4.1, we immediately derive from Corol-
lary 11.2 the following special case of the main result of this section.

Theorem 11.4. Let K ′/K and K∞/K be as above (in particular, we assume that
H = Gal(K∞/F ) is contained in H), and suppose that µ(X(E/F )) = 0. Recall that
E has good and ordinary reduction at the primes above p. For any Zp-extension
L ∈ U of K, we write L′ = LK ′.

Then X(E/L′) is Λ-torsion and µ(X(E/L′)) vanishes for each L ∈ U , and there
exists some constant C ∈ N such that

λ(X(E/L′)) ≤ C
for each L ∈ U .

Proof. Write
rankp(N) = dimFp

(N/pN)

for every abelian group N such that the quotient N/p is finite. It follows from
Corollary 11.2 that the kernels and the cokernels of the maps

ϕL : (X(E/L′)∆)/p −→ X(E/L)/p

are bounded as L runs over the elements from U . Since X(E/F ) is Λ-torsion and
E(F )[p∞] is finite because H ∈ H, it follows from [34, Theorem 4.5] that there exist
constants C1, C2 ∈ N such that the cardinalities of the kernels and cokernels of the
natural maps

sL,n : Selp∞(E/LHL,n) −→ Selp∞(E/L)HL,n

are bounded by C1 and C2 for each n ∈ N and for every L ∈ U , where we denote
by HL,n the Galois group Gal(L/K)p

n

= Gal(L/Ln) over the n-th intermediate
layer, respectively. In [34, Theorem 4.5] this is phrased in terms of so-called Fukuda
modules. For the purpose of this paper it suffices to think of a Fukuda module as
a collection of Iwasawa modules along a Zp-extension (e.g. the Pontryagin duals
of the Selmer groups of E along the layers of a Zp-extension L/K) for a which a
control theorem holds.

If U = E(K∞,m) and n ≤ m, then Ln = Fn equals the n-th intermediate layer
of the Zp-extension F/K, and therefore

rankp(X(E/Ln)) = rankp(X(E/Fn)) ≤ rankp(X(E/F )) + C3

for each L ∈ U and some fixed constant C3. Now we use [34, Corollary 3.8]
(applied to A = X(E/L) and I = (p) ⊆ Λ, respectively) in order to deduce that
rankp(X(E/L)) is finite and bounded for each L ∈ U , provided that this neigh-
bourhood is sufficiently small. Therefore X(E/L) is Λ-torsion and µ(X(E/L)) = 0
for each L ∈ U . Moreover, since

(X(E/L′)∆)/p = (X(E/L′)/p)∆,
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it follows from Corollary 11.2 and Lemma 11.3 that rankp(X(E/L′)) is bounded
as L runs over the elements from U . This implies that X(E/L′) is Λ-torsion and
µ(X(E/L′)) = 0 for each of these L, and that λ(X(E/L′)) remains bounded. In-
deed, if Z denotes any finitely generated and torsion Λ-module such that rankp(Z)
is finite, and if EZ denotes an elementary Λ-module attached to Z, then rankp(EZ)
is also finite, and

rankp(EZ) ≤ rankp(Z)

(see [33, Proposition 3.4]). Note that rankp(EZ) is finite if and only if µ(Z) = 0,
and in this case we have rankp(EZ) = λ(Z). �

We want to prove a similar result which also holds in situations where the µ-
invariant of X(E/F ) is not trivial. In this case we cannot consider p-ranks because
the quotient X(E/F )/p will not longer be finite. However, we can exploit the Galois
module structure of our Iwasawa modules. Recall that K ′ ∩K∞ = K. Therefore
the extension K ′∞/K is abelian with Galois group isomorphic to

G×∆,

where G = Gal(K ′∞/K
′) can be identified with Gal(K∞/K). Similarly,

Gal(L′/K) ∼= ΓL ×∆

for each L ∈ U , where ΓL = Gal(L/K) ∼= Zp. This implies that the map ϕL from
Corollary 11.2 is a homomorphism of Λ-modules (the action of ∆ commutes with
the G-action). As in Proposition 4.1, we may thus derive the following

Corollary 11.5. Let m ∈ N, let ν ∈ Λ be an arbitrary element, and let U be as in
Lemma 11.1. Then the kernels and the cokernels of the maps

ϕL : (X(E/L′)∆)/ν −→ X(E/L)/ν

are finite and of bounded order as L runs over the elements in U . The upper bounds
for the cardinalities do not depend on the choice of ν.

We are now ready to prove the main ingredient of our shifting result.

Theorem 11.6. Let K ′/K and K∞/K be as above (in particular, we recall that
∆ = Gal(K ′/K) has order pr), and let E be an elliptic curve defined over K. For
any Zp-extension L of K, we write L′ = L ·K ′. We assume that E has good or-
dinary reduction at the primes above p, and that F = KH

∞ is a Zp-extension of K
inside K∞. Suppose that H ∈ H, and that X(E/F ′) is Λ-torsion.

We assume that

X(E/K∞)[p∞] = X(E/K∞)[p] and X(E/K ′∞)[p∞] = X(E/K ′∞)[p].

Then there exists a neighbourhood U ⊆ E⊆K∞(K) of F such that

µ(X(E/L′)) ≤ pr · µ(X(E/L))

for all but finitely many L ∈ U .
If moreover X(E/F ′)[p∞] = X(E/F ′)[p], then

µ(X(E/F ′)) ≤ pr · µ(X(E/F )).

Proof. We will use Corollary 11.5 with the choice

ν = νm,n(T ) =
(T + 1)p

m − 1

(T + 1)pn − 1
∈ Zp[T ] ⊆ Λ
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for suitable integers m ≥ n. Since X(E/F ′) and X(E/F ) are both Λ-torsion in
view of our hypotheses, the quotients X(E/F )/ν and X(E/F ′)/ν are finite for all
sufficiently large m and n (the polynomials νn+1,n(T ) are pairwise coprime as n
runs over the natural numbers, and therefore the νm,n will be coprime with the
characteristic power series of X(E/F ) and X(E/F ′) for sufficiently large m and
n). Fix m and n for the moment (a more concrete choice will be made below), and
let I ⊆ Λ be the ideal generated by p and νn,m. As in the proof of Theorem 11.4 it
follows from [34, Theorem 4.5 and Corollary 3.8] that U can be made small enough

to ensure that, for some constant C̃, we have

vp(|X(E/L)/I|) ≤ vp(|X(E/F )/I|) + C̃ (30)

for each L ∈ U . These results can be applied because X(E/F ) is Λ-torsion, E has
good ordinary reduction at the primes above p and E(F )[p∞] is finite (because

H ∈ H, see Lemma 2.7). Note that the constant C̃ is independent from m and n.

Indeed, according to [34, Corollary 3.8] the choice of C̃ depends only on the number
of generating elements of the ideal I, which is two for any choice of n and m.

Corollary 11.5 implies that there exists a constant C ∈ N such that

vp(|(X(E/L′)∆)/(p, νm,n)|) ≤ vp(|X(E/L)/(p, νm,n)|) + C (31)

for each L ∈ U . Recall from Lemma 11.3 that for any finite Zp[∆]-module Z which
is annihilated by p, we have

vp(|Z|) ≤ pr · vp(|Z∆|).

We apply this to the module Z = X(E/L′)/(p, νm,n) in order to conclude that, for
a suitable constant C ′, we have

vp(|X(E/L′)/(p, νm,n)|) ≤ pr · vp(|X(E/L)/(p, νm,n)|) + C ′ (32)

for each L ∈ U . Indeed, let ∆ = {σ1, . . . , σpr}. Then

(X(E/L′)∆)/(p, νm,n) = X(E/L′)/(σ1 − 1, . . . , σpr − 1, p, νm,n)

= (X(E/L′)/(p, νm,n))∆,

since ∆ and Γ commute. Therefore we can combine equations (29) (with
Z = X(E/L′)/(p, νm,n)) and (31) in order to obtain the desired inequality.

Now we need two auxiliary lemmas.

Lemma 11.7. Let L = KHL
∞ . Then it follows from the assumptions of The-

orem 11.6 that

µ(X(E/L)) = µ(X(E/L)/p)

holds as soon as HL ∈ H and X(E/K∞)f is finitely generated over Λ(HL).
Therefore this equation holds for all but finitely many L ∈ E⊆K∞(K).
Similarly,

µ(X(E/L′)) = µ(X(E/L′)/p)

holds for all but finitely many L′ under the assumptions of Theorem 11.6.

Proof. Suppose that L = KHL
∞ for some HL ∈ H, let m ≥ 2 be arbitrary, and

consider the map

φ0 : X(E/K∞)[pm]HL
−→ X(E/L)[pm].
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If X(E/K∞)f is finitely generated over Λ(HL), then it follows from Proposition 4.2
that the cokernel of φ0 is finite. Since X(E/K∞)[pm] = X(E/K∞)[p], it follows
that

X(E/L)[pm] \X(E/L)[p]

is finite. The first part of the lemma now follows from the general structure theory
of Λ-modules.

We already know from Proposition 1.4 that the MH(G)-property holds for all
but finitely many H ∈ E , provided that H is non-empty. The latter holds for both
Z2
p-extensions K∞/K and K ′∞/K

′ in view of the hypotheses from Theorem 11.6.
The last assertion of the lemma thus can be proved analogously. �

Lemma 11.8. Let Z be any finitely generated torsion Λ-module such that
Z[p∞] = Z[p]. For each m,n ∈ N such that νm,n is coprime with the character-
istic power series of Z, we have

µ(Z) · (pm − pn) ≤ vp(|Z/(p, νm,n)|).

Proof. Let EZ be an elementary torsion Λ-module attached to Z, and write

EZ = E1 ⊕ E2,

where p · E2 = {0}, and where multiplication by p is injective on E1. Then [35,
Lemma 3.7] implies that

vp(|Z/(p, νm,n)|) ≥ vp(|E2/(p, νm,n)|).

Since Z[p∞] = Z[p] and therefore p ·E2 = {0}, the right hand side of this inequality
equals

µ(Z) · deg(νm,n) = µ(Z) · (pm − pn).

�

Now suppose that L ∈ U is such that X(E/K∞)f is finitely generated over

Λ(HL), and let M =
⊕s

i=1 Λ/(p) ⊕
⊕t

j=1 Λ/(fj) be an elementary Λ-module at-

tached to X(E/L) (here we use Lemma 11.7). We choose n large enough to ensure
that

λ(X(E/L)) < pn+1 − pn,
and we let m = 2n. Then

Λ/(p, νm,n, fj) = Λ/(p, T deg(fj))

for each j, and therefore

vp(|M/(p, νm,n)|) = µ(X(E/L)) · (p2n − pn) + λ(X(E/L)).

Let ϕ : X(E/L) −→M be a pseudo-isomorphism. Then the kernel and the cokernel
of ϕ are finite, and it follows from [35, Lemma 3.8] that there exists a fixed constant
D such that

|vp(|M/(p, νm,n)|)− vp(|X(E/L)/(p, νm,n)|)| ≤ D

for each m,n.
Using equation (32), it follows from the above that there exists some constant

C ′′ such that

vp(|X(E/L′)/(p, νm,n)|) ≤ pr ·
(
µ(X(E/L)) · (p2n − pn) + λ(X(E/L))

)
+ C ′′
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for every n ∈ N. We enlarge n if necessary to ensure that

pr · λ(X(E/L)) + C ′′ < pn+1 − pn.

Now consider an elementary Λ-module

N =

r⊕
i=1

Λ/(pni)⊕
w⊕
j=1

Λ/(gj)

attached to X(E/L′). In view of Lemma 11.7, for all but finitely
many L ∈ U , we may assume that ni = 1 for each i. Recall that
µ(X(E/L′)) · (p2n − pn) ≤ vp(|X(E/L′)/(p, νm,n)|) by Lemma 11.8. The first
statement of the theorem is now immediate from our choice of n.

The proof of the second statement is analogous – if X(E/F ′)[p∞] is annihilated
by p, then the assertion µ(X(E/F ′)) = µ(X(E/F ′)/p) from Lemma 11.7 clearly
holds for F ′ even although we do not know whether X(E/K ′∞)f is finitely generated
over Λ(Gal(K ′∞/F

′)). (This is important since our major goal is to prove the
MH(G)-property for F ′). �

We now prove the main result of this section.

Theorem 11.9. Let K∞/K, F = KH
∞, K ′/K and the neighbourhood U be as in

Theorem 11.6. In particular, we assume that H ∈ H and that X(E/F ′) is Λ-
torsion. Suppose that
(1) X(E/K∞)f is finitely generated over Λ(H),
(2) µG(X(E/K ′∞)) = [K ′ : K] · µG(X(E/K∞)), and that
(3) X(E/K∞)[p∞], X(E/F ′)[p∞] and X(E/K ′∞)[p∞] are annihilated by p.
Then X(E/K ′∞)f is finitely generated over Λ(H) (here we identify Gal(K ′∞/F

′)
with H).

Proof. We will actually give two arguments, using Theorem 1.3, and in particular
the equivalence of (a) with (b) and (e), respectively.

First recall from Theorem 5.1, Corollary 5.2 and Theorem 1.3 that

µ(X(E/L)) ≥ µG(X(E/K∞))

for each L = KHL
∞ , HL ∈ H, with equality iff X(E/K∞)f is finitely generated over

Λ(HL). A similar fact holds for the Zp-subextensions L′ of K ′∞. Now choose a
neighbourhood U of F as in Theorem 11.6. In view of hypothesis (1) and Pro-
position 1.4, we may and will assume that X(E/K∞)f is finitely generated over
Λ(Gal(K∞/L)) for each L ∈ U . For all but finitely many of these L (including F
by (3)), we thus have

µG(X(E/K ′∞))
5.1
≤ µ(X(E/L′))

11.6
≤ [K ′ : K] · µ(X(E/L))
1.3
= [K ′ : K] · µG(X(E/K∞))

(2)
= µG(X(E/K ′∞)).

First approach to prove the theorem: In fact, it follows from this chain of inequalities
that we must have equality everywhere. Looking at the first line, the case L = F
yields the first proof of the theorem.
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Second approach to prove the theorem: Now we consider the Zp-extensions in
the neighbourhood U of F . We will study the boundedness of λ-invariants. To this
purpose, we will show that, if U is sufficiently small, then

λ(X(E/L′)) ≤ C
for each L ∈ U , for some fixed constant C. Then the statement of the theorem will
follow from the implication (e) =⇒ (a) of Theorem 1.3.

Recall from the above that

µ(X(E/L′)) = µG(X(E/K ′∞))

for all but finitely many L ∈ U , including L = F . Since H ∈ H, it follows from
Lemma 2.7 that E(F ′)[p∞] is finite. Moreover, X(E/F ′) is Λ-torsion by assump-
tion. Therefore [34, Theorem 4.11] implies that in a possibly smaller neighbourhood
U ′ ⊆ U of F ′, we have that

λ(X(E/L′)) ≤ λ(X(E/F ′))

for all but finitely many L′. This proves that the λ-invariant of X(E/L′) is bounded
on U . �

In the remainder of this section, we want to describe a natural setting where
the second condition from Theorem 11.9 is satisfied. We restrict to the case
[K ′ : K] = p. The idea is to kind of use Theorem 1.3 for a ‘vertical’ second Z2

p-
extension of K which contains F and K ′.

Lemma 11.10. Let K∞, K ′, F and F ′ be as in Theorem 11.6, and suppose that
[K ′ : K] = p and that X(E/K∞)f is finitely generated over Λ(H). We assume that
K ′ is contained in a Zp-extension M of K, and we let K∞ = K∞M (this is a
Z3
p-extension of K). Write G = Gal(K∞/K) and G′ = Gal(FM/M).

Suppose that
(a) X(E/FM)f is finitely generated over Λ(Gal(FM/F )), and
(b) µG(X(E/K∞)) = µG′(X(E/FM)).
Then

µG(X(E/K ′∞)) = p · µG(X(E/K∞)).

Before we start with the proof of the lemma, we would like to make plausible
that such auxiliary ‘vertical’ Z2

p-extensions do exist naturally. Let Kcyc be the
cyclotomic Zp-extension of K. We assume that Kcyc is contained in the ‘vertical’
Z2
p-extension FM of K. Then it is plausible in view of Proposition 1.4 that F can be

chosen such that hypothesis (a) from the lemma is satisfied. Moreover, suppose that
rankΛ(X(E/Kcyc)) = µ(X(E/Kcyc)) = 0 (or that the analogous properties hold for
any other Zp-extension FMH , H ∈ H, of K contained in FM). Then it follows
from Theorem 5.1 that

µG′(X(E/FM)) = 0.

Analogously, one can show (by using [36, Corollary 3.15(a) and (b)] for example)
that µG(X(E/K∞)) = 0. Therefore hypothesis (b) from Lemma 11.10 is satisfied.

Proof of Lemma 11.10. The main part of the proof will focus on the following auxil-
iary statement: we show that there exists a neighborhood U = E(F, n) ∩ E⊆K∞(K)
of F such that
• Gal(K∞/L) ∈ H,
• Gal(K ′∞/L

′) ∈ H and
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• µ(X(E/L′)) = p · µ(X(E/L))
for each L ∈ U .

This statement will imply the assertion of the lemma. Indeed, we recall that the
equivalent conditions from Theorem 1.3 hold for all but finitely many L ∈ E⊆K∞(K)

and for all but finitely many L′ ∈ E⊆K′
∞(K ′) (cf. Proposition 1.4). Therefore

Theorem 1.3,(b) and the last assertion of the auxiliary result yield the lemma.
It follows from Proposition 2.5 and our hypotheses on F and F ′ that the first

two conditions of the auxiliary result are satisfied in each sufficiently small neigh-
bourhood of F .

Since X(E/FM)f is finitely generated over Λ(Gal(FM/F )) and as K ′ corres-
ponds to the first layer of the Zp-extension M/K, it follows from the implication
(a) =⇒ (c) of Theorem 1.3 that

µ(X(E/F ′)) = p · µ(X(E/F )).

We will now show that for each L which is contained in some sufficiently small
neighbourhood U of F , X(E/LM)f is finitely generated over Λ(LM/L); by the
above, this will conclude the proof of the lemma.

To this purpose, we consider the Z3
p-extension K∞ = K∞ ·M of K (recall that

K ′ ∩K∞ = K). Choose topological generators σ, τ and ρ of Gal(K∞/K) ∼= Z3
p

such that

K∞ = K〈ρ〉∞ , M = K〈σ,τ〉∞ .

Moreover, we can assume that H = 〈τ〉, i.e. F = K
〈τ〉
∞ . For any intermediate field

Z of the Z3
p-extension K∞/K, we denote by Fix(Z) ⊆ 〈σ, τ, ρ〉 the subgroup such

that Z = KFix(Z)
∞ . Then

Fix(F ·M) = Fix(F ) ∩ Fix(M) = 〈τ, ρ〉 ∩ 〈σ, τ〉 = 〈τ〉.

Suppose that U = E(F, n) ∩ E⊆K∞(K). Then any Zp-extension L ∈ U of K is a
subfield of K∞ which is fixed by an element of the form σaτ , a ∈ pnZp. Therefore

Fix(L ·M) = Fix(L) ∩ Fix(M) = 〈σaτ, ρ〉 ∩ 〈σ, τ〉 = 〈σaτ〉.

We summarise the fields in the following diagram.

K∞〈ρ〉

〈σ,τ〉K∞
〈σaτ〉 〈τ〉

L

〈σ〉

F

〈σ〉

M

〈ρ〉

Ln = Fn

K
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Now fix L ∈ U , L = K
〈σaτ〉
∞ . We have that Gal(K∞/L) ∈ H. This allows us

to replace K∞ with LM in Lemma 2.12 and Proposition 2.15 to show that
H2(GS(LM), E[p∞]) = 0 and that we have an exact sequence

0 −→ Selp∞(E/LM) −→ H1(GS(LM), E[p∞])
λ∞−→

⊕
v∈S

Jv(E/LM) −→ 0.

Therefore [40, Proposition 4.8] can be applied to the Zp-extension K∞/LM in order
to deduce that

µG(X(E/K∞)) = µGal(LM/K)(X(E/LM))− µGal(LM/K)((X(E/K∞)f )〈σaτ〉)

(note that both K∞ and LM are ’admissible’ extensions in the sense of [40] al-
though they might not contain the cyclotomic Zp-extension of K, since they con-
tain L = KHL

∞ with HL ∈ H; also note that Lim assumes p to be odd, but as K is
assumed to be totally imaginary if p = 2 his proof also works for p = 2).

It therefore follows that

µG(X(E/K∞)) ≤ µGal(LM/K)(X(E/LM)) (33)

with equality iff µGal(LM/K)((X(E/K∞)f )〈σaτ〉) = 0.
In the following chain of equations, we will, by abuse of notation, denote any

two-variable Iwasawa algebra by Λ2 and any one-variable Iwasawa algebra by Λ1.
Moreover, we will repeatedly use the equivalence (a)⇔ (b) from Theorem 1.3, which
will be abbreviated by the symbol (?). Recall that X(E/K∞)f is finitely generated
over Λ(Gal(K∞/F )) by assumption and that it follows from Theorem 1.3, (a)⇔ (e)
that the same holds true for each L ∈ U , provided that U has been chosen small
enough. On the other hand, X(E/FM)f is finitely generated over Λ(Gal(FM/F ))
in view of hypothesis (a). Therefore

µΛ2(X(E/FM))
(?)
= µΛ1(X(E/F ))

(?)
= µΛ2(X(E/K∞))

(?)
= µΛ1(X(E/L))

5.1
≥ µΛ2

(X(E/LM))

(33)

≥ µG(X(E/K∞))

(b)
= µΛ2(X(E/FM)).

It follows that we have equality everywhere. In particular,

µΛ2(X(E/LM)) = µΛ1(X(E/L))

for each L ∈ U (provided that U has been chosen small enough), and therefore,
for each such L, Theorem 1.3 implies that X(E/LM)f is finitely generated over
Λ(Gal(LM/L)). This concludes the proof of the auxiliary statement and therefore
also the proof of Lemma 11.10. �
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50 SÖREN KLEINE, AHMED MATAR, AND SUJATHA RAMDORAI

[31] C.-H. Kim, R. Pollack, T. Weston, On the freeness of anticyclotomic Selmer groups of

modular forms, Int. J. Number Theory, 13 (2017), no. 6, 1443–1455.

[32] K. Kato, p-adic Hodge theory and values of zeta functions of modular forms, in: Cohomologies
p-adique et applications arithmetiques III, Astérisque 295 (2004), 117–290.
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