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Abstract. This paper proves a control theorem for the p-primary
Selmer group of an abelian variety with respect to extensions of the
form: maximal pro-p extension of a number field unramified outside a
finite set of primes R which does not include any primes dividing p in
which another finite set of primes S split completely. When the Galois
group of the extension is not p-adic analytic, the control theorem gives
information about p-ranks of Selmer and Tate-Shafarevich groups of the
abelian variety. The paper also discusses what can be said in regards to
a control theorem when the set R contains all the primes of the number
field dividing p.

1. Introduction

Let K be a number field and p a prime number. Suppose K∞/K is a
Zp-extension of K i.e. a Galois extension K∞/K with Γ = Gal(K∞/K)
isomorphic to Zp. Then we may write, K∞ = ∪nKn with [Ki+1 : Ki] = p.

Now suppose A is an abelian variety defined over K. For any algebraic
extension L/K let Selp(A/L) denote the p-primary subgroup of the Selmer
group Sel(A/L). A classical theorem of Mazur [20] (Mazur’s ‘Control The-
orem’) proves the following:

Theorem (Mazur). Assume p is a prime, K is a number field and A is an
abelian variety defined over K with good ordinary reduction at all the primes
of K above p. Assume that K∞ = ∪nKn is a Zp-extension of K. Then the
natural maps (induced by restriction):

Selp(A/Kn) −→ Selp(A/K∞)Gal(K∞/Kn)

have finite kernels and cokernels and their orders are bounded as n varies.

This theorem has been generalized in various ways by Greenberg [9], where
he considers certain p-adic Lie extensions of a number field. The purpose
of this paper is to prove an analog of these results in certain extensions
conjectured not to be p-adic analytic: namely infinite extensions of the form

K
(p)

R,S
/K where K is a number field, R and S are finite sets of primes of K

with R not containing any primes of K above p (p some fixed prime) and

K
(p)

R,S
/K is the maximal pro-p extension of K that is unramified outside of

R in which all primes in S split completely. We allow R and S to be empty.
1
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In case we have that R = S = ∅, the extension K
(p)

∅,∅/K is the maximal

unramified (everywhere) pro-p extension of K. This is the p-Hilbert class
field tower of K. In this case the existence of infinite such extensions was
shown for the first time in 1964 by Golod and Shafarevich [13]. To state
their result, let ρ(K) denote the p-rank of the ideal class group of K and
ν(K) = r1 +r2 +δK−1 where (r1, r2) is the signature of the number field K
and δK = 1 or 0 depending on whether (respectively) K contains a primitive

p-th root of unity or not. They proved that if ρ(K) ≥ 2+2
√
ν(K) + 1, then

the p-class field tower of K is infinite. We will later in section 2 explain a

condition that more generally guarantees that K
(p)

R,S
/K is infinite where R

and S are not necessarily empty.
Let now us mention (a special case of) the Fontaine-Mazur conjecture.

With our notation above, we let Σ
R,S

K,p
= Gal(K

(p)

R,S
/K). In [8], Fontaine and

Mazur conjectured:

Conjecture (Fontaine-Mazur). For any number field K, Σ
R,S

K,p
has no in-

finite p-adic analytic quotient.

Assuming this conjecture, we get that Σ
R,S

K,p
is infinite if and only if it

is not p-adic analytic (the “if” part follows from the fact that any finite
group is p-adic analytic for any prime p). In some of the main results of this

paper, we will make the assumption that Σ
R,S

K,p
is not p-adic analytic. As we

will explain later, this assumption is equivalent to the unboundedness of the
minimal number of topological generators of the open normal subgroups of

Σ
R,S

K,p
.

It has been shown in several cases that Σ
R,S

K,p
is not p-adic analytic. For

example, Hajir [14] proved that if the “Golod-Shafarevich condition” (as

above) ρ(K) ≥ 2 + 2
√
ν(K) + 1 is met, then the Galois group Σ

∅,∅

K,p
of the

(infinite) p-class field tower of K is not p-adic analytic. Other cases for

which Σ
R,S

K,p
is not p-adic analytic are shown in articles by Boston [2], Maire

[19] and Wingberg [27].
In section 2, following Hajir, we explain a condition that guarantees that

Σ
R,S

K,p
is not p-adic analytic.

Before stating the results of this paper let us define the p-rank of an
abelian group G (possibly infinite) as:

rp(G) = dimFp G[p]

This of course extends the usual definition of p-rank of a finite abelian group.
Now let p be a prime and K be a number field, with sets R and S of

primes of K as above. We will denote the primes of K dividing p and
archimedean primes of K by Rp and R∞ respectively. Also, to simplify

notation, we will denote K
(p)

R,S
by K∞ and also denote Gal(K

(p)

R,S
/K) by

Σ. Finally, we will let E be the set of fields K ′ such that K ′/K is a finite
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extension contained in K∞.

Suppose A is an abelian variety defined over K. For any non-archimedean
prime v of K, let cA,v (also simply denoted cv) be the Tamagawa number of
A at v (we will recall its definition later). Also we will let B be the (finite)
set of primes of K where A has bad reduction.

Let us say Condition (C) is satisfied if the following are met:

(i) (cv, p) = 1 for all primes v ∈ (B ∩ Rp) \ S of K and for every prime
v ∈ B \ (R ∪ S ∪Rp) we have either (cv, p) = 1 or A(Kv)[p

∞] = {0}.
(ii) A(Kv) is connected for every prime v ∈ R∞ that ramifies in K∞/K.
(iii) A(Kv)[p

∞] = {0} for all primes v ∈ R \ (S ∪R∞).

We can now state the main result of this paper:

Theorem A. For any K ′ ∈ E, the natural map

sK′ : Selp(A/K
′) −→ Selp(A/K∞)Gal(K∞/K′)

has finite kernel and cokernel. Moreover we have:

(i) If A(K)[p] = {0}, then ker sK′ = {0} for any K ′ ∈ E. If we also have
that condition (C) is satisfied, then coker sK′ = {0} for any K ′ ∈ E.

(ii) Suppose A(K)[p] 6= {0} and Σ is not p-adic analytic. Then:
(a) If condition (C) is satisfied, then rp(ker sK′) is unbounded as K ′

varies through the set E.
(b) If rank(A(K ′)) is bounded as K ′ varies through E, X(A/K ′)[p∞]

is finite for any K ′ ∈ E and K is totally imaginary if p = 2, then
rp(coker sK′) is unbounded as K ′ varies through E.

Theorem A above has an interesting corollary giving a result about the
structure of X(A/K∞)[p∞] in a certain case.

Corollary A. Suppose Σ is not p-adic analytic, K is totally imaginary in
the case when p = 2, and A and A′ are two abelian varieties defined over K
with A isogenous to A′ over K and:

(i) A(K)[p] 6= {0}.
(ii) A′(K)[p] = {0}, Selp(A

′/K) = {0} and condition (C) is satisfied (with
respect to K and A′).

Then X(A′/K∞)[p∞] = 0 and X(A/K∞)[p∞] contains an infinite ele-
mentary abelian p-group. If the isogeny from A to A′ is of degree p, then
X(A/K∞)[p∞] is itself an infinite elementary abelian p-group.

From Theorem A, we see that if Σ is not p-adic analytic and A is an
abelian variety defined over K with A(K)[p] 6= {0} and condition (C) is
satisfied, then rp(Selp(A/K

′)) is unbounded as K ′ varies through E. The
following theorem gives a stronger result:

Theorem B. If Σ is not p-adic analytic and A is an abelian variety
defined over K with A(K)[p] 6= {0} and condition (C) is satisfied, then
rp(X(A/K ′)) is unbounded as K ′ varies through E.
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Theorem B can be strengthened in some cases to give a lower bound on
rp(X(A/K ′)) of the form c[K ′ : K] + 1 where c is a positive constant. See
the discussion following the proof of Theorem B.

2. Preliminaries

Throughout this paper, we will fix a prime p, a number field K, an abelian
variety A defined over K and sets R and S of primes of K as in the introduc-
tion. We will also use the same notation introduced there: We will denote
the primes of K dividing p and archimedean primes of K by Rp and R∞
respectively and will also let B be the (finite) set of primes of K where A
has bad reduction and E be the set of fields K ′ such that K ′/K is a finite

extension contained in K
(p)

R,S
. Let us also denote K

(p)

R,S
by K∞ and for any

K ′ ∈ E denote Gal(K
(p)

R,S
/K ′) by ΣK′ . We will often simply write Σ for ΣK .

Note that for any K ′ ∈ E we have K ′
(p)

R′,S′ = K
(p)

R,S
where R′ and S′ are the

extensions of the sets R and S to K ′.
Also, for any number field F and any set S of primes of F , we will (as is

standard) denote the ideal class group of F by Cl(F ) and the S-ideal class
group of F by ClS(F ) (recall that ClS(F ) is the quotient of Cl(F ) by the
subgroup generated by the classes of the prime ideals in S).

Finally, for any algebraic extension L/K and any prime v ∈ L, we will
let Lv denote the union of the v-adic completions of all finite extensions of
K contained in L.

For any pro-p group G, we set:

hi(G) = dimZ/pZH
i(G,Z/pZ) (G acts trivially), i = 1, 2.

Then

h1(G) = dimZ/pZ Homcont(G,Z/pZ) = h1(Gab)

and h1(G) is finite if and only if G is topologically finitely generated, in
which case h1(G) is the minimal number of topological generators of G (also
of Gab). If in addition to h1(G) being finite we also have h2(G) finite, then
h2(G) is the minimal number of relations for defining G as a pro-p group.

Now in the case where K ′ ∈ E, we have that h1(ΣK′) and h2(ΣK′) are
both finite. This follows from [23] Theorem 10.7.12 which in fact calculates
both of these quantities. These calculations will be important in Lemma
2.3.

Another important observation is that for any K ′ ∈ E, we have that
Σab
K′ is finite. In the case when R = ∅, this is easy: Σab

K′
∼= ClS(K ′)[p∞].

In the general case, we can argue as follows: we have that ΣK′ is finitely
generated (since as we just discussed h1(ΣK′) is finite) and hence so is Σab

K′

(implying Σab
K′ is finitely generated over Zp). But K ′ cannot have a Zp-

extension contained in K∞, since in any such extension some prime above
p must ramify (and R ∩Rp = ∅). So rankZp(Σab

K′) = 0 and therefore Σab
K′ is

finite.
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Following Hajir [14], we will now give a condition that guarantees that
Σ is not p-adic analytic. Before doing this let us state two theorems from
the literature and introduce some notation. First, we have the following
well-known theorem of Golod and Shafarevich in its sharpened form due to
Gaschütz and Vinberg (see [24] Th. 10 or [23] Th. 3.7.9).

Theorem 2.1. Let G be a finite p-group, then h2(G) > 1
4 h1(G)2.

From the work of Lubotzky (Prop. 1.3 of [17]) we get the following re-
finement of this theorem for p-adic Lie groups

Theorem 2.2. Let G be a pro-p p-adic analytic group with both h1(G) ≥ 2
and h2(G) ≥ 2, then h2(G) > 1

4 h1(G)2.

We will now introduce some notation related to the set R. First let us
note that the following primes cannot ramify in a pro-p extension and are
therefore redundant in R:

(1) Complex primes
(2) Real primes if p 6= 2
(3) Primes p - p with N(p) 6≡ 1 mod p (see [25] IV Prop. 7)

Removing all of the above redundant primes and R∩ S from R we obtain a
subset Rmin ⊆ R for which we have:

K
(p)

R,S
= K

(p)

Rmin,S

Let us define δ to be 1 if K contains a primitive p-th root of unity and 0
otherwise. Also, we let (r1, r2) be the signature of the number field K.

Lemma 2.3. Σ is not p-adic analytic if:

(i) R = ∅ and

rp(ClS(K)) ≥ 2 + 2
√
r1 + r2 + δ + #S \R∞

(ii) R 6= ∅ and

#Rmin ≥ 1 + r1 + r2 + δ + #S \R∞ + 2
√
r1 + r2 + #S \R∞

Proof. Assume by means of contradiction that Σ is p-adic analytic. If we
further assume that h1(Σ) = 1, then Σ is abelian and hence finite since as
we mentioned before Σab is finite.

Then from Theorem 2.1, we have:

h2(Σ) > 1
4 h1(Σ)2

From this we deduce that:

(1) h1(Σ) < 2 + 2
√
h2(Σ)− h1(Σ) + 1

We now use the calculations of h1(Σ) and h2(Σ) in [23]. In case (i) of the
lemma, we have by loc. cit. Th. 10.7.12 that:

h2(Σ)− h1(Σ) + 1 ≤ r1 + r2 + δ + #S \R∞
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Combining this inequality with (1) gives:

h1(Σ) < 2 + 2
√
r1 + r2 + δ + #S \R∞

Since R = ∅, therefore h1(Σ) = rp(ClS(K)), hence by the above inequality
we get that:

rp(ClS(K)) < 2 + 2
√
r1 + r2 + δ + #S \R∞

which contradicts (i), so h1(Σ) ≥ 2.
In case (ii) of the lemma, we have by loc. cit. Th. 10.7.12 that:

h2(Σ)− h1(Σ) + 1 ≤ r1 + r2 + δ + #S \R∞
Combining this inequality with (1) gives:

h1(Σ) < 2 + 2
√
r1 + r2 + #S \R∞

Also, by loc. cit. Th. 10.7.12 we have that:

h1(Σ) ≥ 1 +Rmin − δ − (r1 + r2)−#S \R∞
Therefore the two previous inequalities give:

1 +Rmin − δ − (r1 + r2)−#S \R∞ < 2 + 2
√
r1 + r2 + #S \R∞

This contradicts (ii). Therefore h1(Σ) ≥ 2.
We have shown that under the assumptions of the lemma, we must have

h1(Σ) ≥ 2. Therefore, Σ is a pro-p p-adic Lie group with h1(Σ) ≥ 2. From
Lemma 3.2 of the next section, we also get that h2(Σ) ≥ 2, so by Theorem
2.2 we have that: h2(Σ) > 1

4 h1(Σ)2. But then by the same reasoning as
above, this cannot by true. Therefore Σ is not p-adic analytic. �

We will now state an important equivalent condition to Σ not being p-adic
analytic. A theorem of Lubotzky and Mann [18] states that for a finitely
generated pro-p group G, the lim sup and lim inf of

dimZ/pZH
1(H,Z/pZ)

as H ranges over all normal open subgroups ofG are equal (possibly infinite),
and G is p-adic analytic if and only if this common value is finite.

From this we immediately deduce:

Theorem 2.4. Σ is not p-adic analytic if and only if h1(ΣK′) is unbounded
as K ′ varies over any set of finite Galois extensions K ′/K contained in K∞
such that the set of subgroups Gal(K∞/K

′) are a cofinal subset of the normal
open subgroups of Σ.

Throughout the proof of various lemmas and Theorem A we will fre-
quently be comparing p-ranks of abelian groups in exact sequences. In re-
gards to this we have the following easy observations:
If 0→ G′ → G→ G′′ → 0 is an exact sequence of p-primary abelian groups
of finite p-rank then:

(i) rp(G
′) ≤ rp(G): This is trivial.
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(ii) rp(G
′′) ≤ rp(G): We show an easy proof of this by considering Pontry-

agin duals. First suppose B is a discrete p-primary abelian group
with finite p-rank, then it is not hard show that its Pontryagin dual

B̂ is finitely generated over Zp (or as it is usually said: B is cofin-
itely generated as a Zp-module). Also, one then easily observes that

rp(B) = rankZp(B̂) + rp(B̂tors). Now give G and G′′ the discrete topo-

logy. Then the Pontryagin dual Ĝ′′ of G′′ is a subgroup of the Pontry-

agin dual Ĝ of G and as G and G′′ both have finite p-rank by assump-
tion, then by what we just noted, to show that rp(G

′′) ≤ rp(G) it suf-

fices to show that rankZp(Ĝ′′) ≤ rankZp(Ĝ) and rp(Ĝ′′tors) ≤ rp(Ĝtors).

But this is rather obvious as Ĝ′′ is a Zp-submodule of Ĝ.
(iii) rp(G) ≤ rp(G

′) + rp(G
′′): This follows by taking Fp-dimensions along

the exact sequence: 0→ G′[p]→ G[p]→ G′′[p]

Let us now explain the basic strategy for the proof of Theorem A. First
recall that for any algebraic extension L of K the p-primary subgroup of the
Selmer group of A over L is defined by the exactness of:

0 −→ Selp(A/L) −→ H1(L,A[p∞]) −→
∏
v

H1(Lv, A)[p∞]

where the last product runs over all primes v of L.
Now suppose L is a finite extension of K and let T be a finite set of

primes of L containing all the primes dividing p, all archimedean primes
and all primes where A has bad reduction. Also let LT be the maximal
extension of L unramified outside of T and GT (L) = Gal(LT /L). Then it is
well-known that Selp(A/L) may be defined by

0 −→ Selp(A/L) −→ H1(GT (L), A[p∞]) −→
∏
v∈T

H1(Lv, A)[p∞]

Let us now fix T to be the set:

T = R ∪B ∪Rp ∪R∞

We then define for any K ′ ∈ E TK′ to be the set of primes of K ′ that lie
over a prime in T .

Note that as K ′ is contained in KT for any K ′ ∈ E, we have K ′
T ′ = KT

where T ′ = TK′ and so GT ′(K ′) = Gal(KT /K
′). To simplify notation, we

will denote GT ′(K ′) simply by GT (K ′). As for K∞, we will define GT (K∞)
as GT (K∞) = Gal(KT /K∞).
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For any K ′ ∈ E we consider the commutative diagram:
(2)

0 // Selp(A/K∞)ΣK′ // H1(GT (K∞), A[p∞])ΣK′
ψK∞

// (lim−→
⊕

w∈T
K̃

H1(K̃w, A)[p∞])ΣK′

0 // Selp(A/K
′)

sK′

OO

// H1(GT (K ′), A[p∞])

hK′

OO

λK′
//
⊕

v∈TK′

H1(K ′v, A)[p∞]

gK′
OO

where in the above diagram the rows are exact, the direct limit of the term
on the top row is taken with respect to the restriction maps, hK′ is given by
restriction and gK′ is the map into the direct limit.

Replacing the terms on the right in both rows of the above diagram with
their images we get the following diagram:
(3)

0 // Selp(A/K∞)ΣK′ // H1(GT (K∞), A[p∞])ΣK′
ψK∞

// imgψK∞
// 0

0 // Selp(A/K
′)

sK′

OO

// H1(GT (K ′), A[p∞])

hK′

OO

λK′
// img λK′

g
′
K′

OO

// 0

From this diagram we have the following exact sequence:
(4)

0→ ker sK′ → kerhK′ → ker g
′
K′ → coker sK′ → cokerhK′ → coker g

′
K′ → 0

Following Greenberg [9] we study the kernels and cokernels of sK′ using the

above sequence by studying the kernels and cokernels of hK′ and g
′
K′ .

All of our results depend on the fact that A(K∞)[p∞] is finite. This fact
is predicted by the Fontaine-Mazur conjecture and follows from a result of
Zarhin (Theorem 6.1 of [28]). However, one can give a fairly simple proof of
this fact based on an idea of Greenberg in [9] of studying the determinant
of the representation on K(A(K∞)[p∞]):

Theorem 2.5. A(K∞)[p∞] is finite

Proof. Let X = A(K∞)[p∞] and let L = K(X). Suppose that X is infinite.
Let us set Vp = Tp(A) ⊗Zp Qp and Wp = Tp(X) ⊗Zp Qp where Tp(A) and
Tp(X) are the p-adic Tate modules of A[p∞] and X respectively. As X is
assumed to be infinite, we have dimQpWp ≥ 1.

Let G = Gal(L/K) and let χ : G → Z×p be the determinant of the
representation of G induced from its action on Wp. Then χ factors through

Gab and as this is finite, we get that img(χ) is finite i.e. consists of roots
of unity. Now choose a prime v of K not dividing p at which A has good
reduction. Then we have that Kv(A[p∞]) is contained in Knr

v , the maximal
unramified extension of Kv, and a well-known theorem of Weil states that
the eigenvalues of Frobenius σv ∈ Gal(Knr

v /Kv) on Vp are algebraic integers
of complex absolute value

√
q where q is the order of the residue field of K
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at v. Letting σ
′
v be Frobenius in the decomposition group of any prime w of

L above v we see that χ(σ
′
v) is not a root of unity which gives the required

contradiction. �

3. Cohomology Group Calculations

In this section, we will prove various results mainly about cohomology
groups used in the proof of Theorem A. First, we have the following ele-
mentary lemma:

Lemma 3.1. Let G be a pro-p group and M a discrete p-primary G-module.
Then M = 0 if and only if MG = 0.

Proof. For the nontrivial direction assume m ∈ M with m 6= 0. Let D be
the G-module generated by m. As M is a discrete p-primary G-module,
we necessarily have that D is finite of p-power order. If d ∈ D \DG, then
the cardinality of its orbit via the action of G is equal to the index of its
stabilizer in G and hence is of order pn for some n ≥ 1 since G is pro-p.
Then by considering the partition of D into orbits under the action of G,
we see that |D| ≡ |DG| (mod p) and therefore since |D| ≡ 0 (mod p), we
have that |DG| ≡ 0 (mod p). But as DG contains 0, we have that |DG| > 0
and so DG 6= 0. �

The next lemma will be crucial in proving the unboundedness of
rp(coker sK′) in part (ii) of Theorem A.

Lemma 3.2. For any K ′ ∈ E and k with k ≥ 1, we have that
H i(ΣK′ ,Z/pkZ) is finite (ΣK′ acts trivially) for i = 1, 2. And

rp(H
2(ΣK′ ,Z/pkZ)) ≥ rp(H1(ΣK′ ,Z/pkZ))

Proof. As mentioned in section 2, we have that H i(ΣK′ ,Z/pZ) is finite for
i = 1, 2, therefore by devissage both H1(ΣK′ ,Z/pkZ) and H2(ΣK′ ,Z/pkZ)
are finite. Now to prove the statement about p-ranks consider the exact
sequence:

0→ Z/pkZ→ Qp/Zp
pk−→ Qp/Zp → 0

Taking the ΣK′-cohomology of this sequence (considering all modules with
trivial action), we get the following exact sequence:

0→ H1(ΣK′ ,Z/pkZ)→ H1(ΣK′ ,Qp/Zp)
pk−→ H1(ΣK′ ,Qp/Zp)→ H2(ΣK′ ,Z/pkZ)

The zero on the left of this sequence follows from the fact that ΣK′ acts
trivially on all the groups in the first short exact sequence.

Note that all the groups occurring in the above sequence are finite abelian
p-groups, for H1(ΣK′ ,Z/pkZ) and H2(ΣK′ ,Z/pkZ) are both finite as we just
discussed and H1(ΣK′ ,Qp/Zp) is the Pontryagin dual of Σab

K′ so is also a
finite abelian p-group.
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From the above sequence, we have that H1(ΣK′ ,Z/pkZ) =
H1(ΣK′ ,Qp/Zp)[pk] and H1(ΣK′ ,Qp/Zp)/pkH1(ΣK′ ,Qp/Zp) is contained in

H2(ΣK′ ,Z/pkZ). Since

rp(H
1(ΣK′ ,Qp/Zp)[pk]) = rp(H

1(ΣK′ ,Qp/Zp)/pkH1(ΣK′ ,Qp/Zp))
we therefore see that:

rp(H
2(ΣK′ ,Z/pkZ)) ≥ rp(H1(ΣK′ ,Z/pkZ))

�

The next two propositions will give nice descriptions of certain cohomo-
logy groups attached to abelian varieties over local fields (both archimedean
and non-archimedean) in certain cases. These propositions are the key tools
in studying the kernels and cokernels of gK′ . Before stating the propositions
let us define the component group and Tamagawa number of an abelian
variety (at a prime):

Definition 3.3. Let A be an abelian variety defined over K, a finite ex-
tension of Qp (p a prime), let A be the Néron model of A over the ring of
integers of K and k be the residue field of K. Let Ak be the special fiber of
A and A0

k its connected component of the identity. The group ΦA = Ak/A
0
k

of connected components is a finite étale group scheme over k. This group
scheme is called the component group of A, and the Tamagawa number of A
is cA = #ΦA(k).

Now suppose that A is an abelian variety over a number field K, then
for any non-archimedean prime v of K the Tamagawa number of A at v
denoted cA,v or simply cv is the Tamagawa number of AKv ; where Kv is the
completion of K at v.

Proposition 3.4. Let A be an abelian variety defined over K, a finite
extension of Qp (p some prime). If K ′/K is an unramified extension,
k′ the residue field of K ′ and G = Gal(K ′/K), then: H i(G,A(K ′)) =
H i(G,ΦA(k′)) for i ≥ 1.

Proof. For i = 1 this is Proposition 4.3 of [20] and one notes that the proof
carries over for i > 1. �

Proposition 3.5. Let A be an abelian variety over R of dimension
d. If A0(R) is the connected component of the identity of A(R), then
H1(Gal(C/R), A) ∼= A(R)/A0(R) = (Z/2Z)n where n = dimZ/2Z(A(R)[2])−
d.

Proof. (sketch) Note that A(R) = (R/Z)d × (Z/2Z)n for some 0 ≤ n ≤ d
(this is the n in the statement of the proposition) and A0(R) is a connected
compact abelian real Lie group of dimension d and therefore is isomorphic
to (R/Z)d. The norm map N : A(C) → A(R) is continuous and A(C) is
connected and compact, so its image is closed and connected. Moreover, as
it contains 2A(R), it has finite index and therefore is open. Consequently,
we must have that NA(C) = A0(R).
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Let At be the dual variety of A and G = Gal(C/R). The Weil pairing
A(C)[2] × At(C)[2] → µ2 is a non-degenerate G-equivariant pairing. From
this we get that: #A(R)[2] = #At(R)[2] and hence the integer n above is
the same for both A and its dual At.

Finally, as shown in [21] p. 46, we have that H1(G,A) is dual to
At(C)G/NAt(C) and by the above this latter group is At(R)/(At)0(R), so
we get that H1(G,A) ∼= (Z/2Z)n = A(R)/A0(R). �

The following lemma lists some well-known properties of isogenous abelian
varieties:

Lemma 3.6. Let A and A′ be two abelian varieties defined over a number
field K with A isogenous to A′ over K. Then we have:

(i) rank (A(K)) = rank (A′(K)).
(ii) X(A/K) is finite if and only if X(A′/K) is finite.

(iii) Sel(A/K) is finite if and only if Sel(A′/K) is finite.

Moreover, the statements of (ii) and (iii) remain true if one replaces the
groups there by their p-primary subgroup (p any prime).

Proof. Since A and A′ are isogenous over K we have morphisms (defined over
K): f : A→ A′, g : A′ → A such that fg = n = gf for some integer n 6= 0.
Since rank(A(K)) = dimQ(A(K)⊗Q) and rank(A′(K)) = dimQ(A′(K)⊗Q)
and multiplication by n is an isomorphism on any Q-vector space, (i) follows.

To see (ii), suppose that X(A′/K) is finite. Then the isogenies f, g define
maps f̄ : X(A/K) → X(A′/K) and ḡ : X(A′/K) → X(A/K) whose
composites are multiplication by n. From this we get that the kernel of
f̄ is contained in X(A/K)[n], but this group is well-known to be finite,
therefore ker f̄ is finite and so we see that X(A/K) is finite. As everything
is symmetric, we have shown (ii).

Finally, for (iii) we can proceed as in (ii) noting that Sel(A/K)[n] is finite,
or we can use (i) and (ii) since Sel(A/K) is finite if and only if rank(A(K)) =
0 (i.e. A(K) is finite) and X(A/K) is finite. The statement about p-primary
subgroups follows similarly to the above. �

We need one final proposition that will be used in proving Theorem A:

Proposition 3.7. Let A be an abelian variety over a number field K, with
At its dual variety. Let p be a prime, and assume K is totally imaginary
if p = 2 and that X(A/K)[p∞] is finite. Let T be a finite set of primes of
K containing all the primes dividing p and all the primes where A has bad
reduction. Let λK be the map:

H1(GT (K), A[p∞])
λK−−→

∏
v∈T

H1(Kv, A)[p∞]

Then:

(i) rp(cokerλK) ≤ rank(A(K)) + rp(A
t(K)tors)

(ii) rp(H
2(GT (K), A[p∞])) ≤ rank(A(K)) + rp(A

t(K)tors)
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Proof. First, let us define the compact Selmer group: For any n, the classical
pn-Selmer group Sel(p

n)(A/K) is defined by the exactness of:

0 −→ Sel(p
n)(A/K) −→ H1(K,A[pn]) −→

∏
v

H1(Kv, A)

From this, we now define the compact p-Selmer group Rp(A/K) as:

Rp(A/K) = lim←−
n

Sel(p
n)(A/K)

where the inverse limit is taken with respect to the multiplication by p maps.
Then we have the Cassels-Poitou-Tate exact sequence (see [3] and [5]):

0 −→ Selp(A/K) −→ H1(GT (K), A[p∞])
λK−−→

∏
v∈T

H1(Kv, A)[p∞]

θK−−→ ̂Rp(At/K) −→ H2(GT (K), A[p∞]) −−−−→ 0(5)

where in the above ̂Rp(At/K) means the Pontryagin dual of the Rp(A
t/K).

We should note that if p = 2 and K has a real place, then the map
̂Rp(At/K) −→ H2(GT (K), A[p∞]) is not necessarily surjective and as the

surjectivity is important for the results of this proposition, we have insisted
that K be totally imaginary if p = 2.

Before proceeding further let us for any abelian group M denote
lim←−M/pnM by M∗ (where the inverse limit is over all n).

Now note that for any n we have an exact sequence:

0→ At(K)/pnAt(K)→ Sel(p
n)(At/K)→X(At/K)[pn]→ 0

Taking inverse limits over n and noting that X(At/K)[pn] is finite for any
n, we get:

(6) 0→ At(K)∗ → Rp(A
t/K)→ TpX(At/K)→ 0

where TpX(At/K) denotes the p-adic Tate module of X(At/K).
Now as X(A/K)[p∞] was assumed to be finite, therefore X(At/K)[p∞]

is also finite by Lemma 3.6 since A is isogenous to At. Then the finiteness
of X(At/K)[p∞] implies that TpX(At/K) = 0. So from the sequence (6)
above we get that: Rp(A

t/K) = At(K)∗.
Now let r = rank(A(K)). Then again by Lemma 3.6, we have that

r = rank(At(K)). Writing At(K) = Zr × D where D is a finite abelian
group, we get that At(K)∗ = Zrp×D′ where D′ = D[p∞]. Then Rp(A

t/K) =

At(K)∗ = Zrp ×D′ and so ̂Rp(At/K) = (Qp/Zp)r ×D′, so rp( ̂Rp(At/K)) =

rank(A(K)) + rp(A
t(K)tors). Then from the Cassels-Poitou-Tate exact se-

quence (5) above, we must have that rp(cokerλK) and rp(H
2(GT (K), A[p∞])

are both less than or equal to rank(A(K)) + rp(A
t(K)tors) since one is a

quotient and the other a subgroup of ̂Rp(At/K). This proves the proposi-
tion. �
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4. Proofs of Theorems A and B

We will now prove Theorem A:

Proof of Theorem A. We will break up the proof into three parts:
(A) Proof that ker sK′ and coker sK′ are finite for any K ′ ∈ E:

From the sequence (4), to prove that ker sK′ and coker sK′ are finite, we
only need to show that kerhK′ , cokerhK′ and ker g′K′ are finite and as ker g′K′

is contained in ker gK′ it suffices to show that ker gK′ is finite.
First note that for any K ′ ∈ E the standard inflation-restriction sequence

gives the following exact sequence:

0 −→ H1(ΣK′ , A(K∞)[p∞]) −→ H1(GT (K ′), A[p∞])
hK′−−→ H1(GT (K∞), A[p∞])ΣK′

−→ H2(ΣK′ , A(K∞)[p∞]) −→ H2(GT (K ′), A[p∞])

(7)

Hence kerhK′ = H1(ΣK′ , A(K∞)[p∞]) and cokerhK′ ⊆
H2(ΣK′ , A(K∞)[p∞]).

Let’s now show that H1(ΣK′ , A(K∞)[p∞]) and H2(ΣK′ , A(K∞)[p∞]) are
finite for any K ′ ∈ E: By Theorem 2.5 A(K∞)[p∞] is finite. Also, as
mentioned in section 2, for any K ′ ∈ E we have that H1(ΣK′ ,Z/pZ) and
H2(ΣK′ ,Z/pZ) are both finite. Then the finiteness of H1(ΣK′ , A(K∞)[p∞])
and H2(ΣK′ , A(K∞)[p∞]) follow by dessivage from the previous two state-
ments and the fact that if G is a pro-p group, then the only simple dis-
crete p-primary G-module is Z/pZ (with trivial action). Hence kerhK′ and
cokerhK′ are finite for any K ′ ∈ E.

Now let’s deal with ker g′K′ . This will be done by studying the map
gK′ . To give a nice description of the kernel and cokernel of gK′ , it
is useful to introduce the following notation: For any K ′′ ⊇ K ′ and
any prime v ∈ TK′ we define Jv(K

′′) =
⊕

w|vH
1(K ′′w, A)[p∞] and define

Jv(K∞) = lim−→ Jv(K
′′) (direct limit is taken with respect to the restriction

maps). Then clearly we have
⊕

w∈TK′′ H
1(K ′′w, A)[p∞] =

⊕
v∈TK′ Jv(K

′′)

and lim−→
⊕

w∈TK′′ H
1(K ′′w, A)[p∞] =

⊕
v∈TK′ Jv(K∞). Hence we may write

gK′ = ⊕
v∈TK′

g(K′,v).

Now for any v ∈ TK′ the kernel and cokernel of g(K′,v) are described by
the inflation restriction sequence because of the following observation: From
Shapiro’s Lemma we get an isomorphism:

H i(ΣK′ , Jv(K∞)) ∼= H i(Σ(K′,w), H
1(K∞,w, A)[p∞]) for all i ≥ 0

where w is some prime of K∞ above v and Σ(K′,w) its decomposition group.

So in particular: Jv(K∞)ΣK′ ∼= H1(K∞,w, A)[p∞]Σ(K′,w)
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We therefore have an exact sequence:

0 −→ H1(Σ(K′,w), A(K∞,w)) −→ H1(K ′v, A)[p∞]
g(K′,v)−−−−→ H1(K∞,w, A)[p∞]Σ(K′,w)

−→ H2(Σ(K′,w), A(K∞,w))

(8)

We should note two things about the above exact sequence: First,
H1(Σ(K′,w), A(K∞w)) and H2(Σ(K′,w), A(K∞w)) are automatically p-
primary since Σ(K′,w) is pro-p. Secondly, if v is non-archimedean the last ar-

row is actually surjective. This follows from the fact that H2(K ′v, A[p∞]) = 0
(which then implies by Kummer theory that H2(K ′v, A)[p∞] = 0) and
H2(K ′v, A[p∞]) = 0 because by Tate local duality ([23] VII-7.2.6) we have
that H2(K ′v, A[p∞]) is dual Tp(A(K ′v)) and the latter group is zero since the
p-primary subgroup of A(K ′v) is finite by Mattuck’s Theorem.

Now for any v ∈ TK′ , we choose a prime w of K∞ above v and then let T ′K′

be the set of these w’s (so #TK′ = #T ′K′). Since gK′ = ⊕
v∈TK′

g(K′,v), there-

fore we have: ker gK′ =
⊕

w∈T ′
K′
H1(Σ(K′,w), A(K∞,w)) and coker gK′ ⊆⊕

w∈T ′
K′
H2(Σ(K′,w), A(K∞,w)) (if p is odd this is actually equality as ex-

plained above).
Now let’s show that ker gK′ is finite, by showing that ker g(K′,v) is finite

for any v ∈ TK′ : Let v ∈ TK′ and w ∈ T ′K′ lying over v. Let’s consider the
archimedean and non-archimedean cases separately:
(a) v non-archimedean:
First, let v | ṽ for some ṽ ∈ R:

Here we actually have that H1(K ′v, A)[p∞] is finite (and hence ker g(K′,v) is
finite). This follows from the two following observations: First, by Tate du-

ality for abelian varieties over local fields ([21] I-3.4): ̂H1(K ′v, A) ∼= At(K ′v).

Therefore, ̂(H1(K ′v, A)[p∞]) ∼= lim←−A
t(K ′v)/p

nAt(K ′v). Secondly, by Mat-

tuck’s Theorem we have that At(K ′v) = Zd[K′
v :Ql]

l × D where D is a finite
group, d is the dimension of At and l is the characteristic of the residue
field of K ′v. But by our fundamental assumption on R, we have that l 6= p,
therefore lim←−A

t(K ′v)/p
nAt(K ′v) is just the (finite) p-primary subgroup of

At(K ′v).
Now let us consider the case of v - ṽ for all ṽ ∈ R:

Let k∞,w be the residue field of K∞,w. Now K∞,w/K
′
v is unramified,

so Proposition 3.4 applies: H1(Σ(K′,w), A(K∞,w)) = H1(Σ(K′,w),Φv(k∞,w))
where to simplify notation we have chosen to let Φv(k∞,w) denote
ΦAK′

v
(k∞,w). Now as Σ(K′,w) is pro-cyclic (since v is unramified in K∞/K

′)

and Φv(k∞,w) has finite order, by using the expression of cohomology in the
pro-cyclic case we see that H1(Σ(K′,w), A(K∞,w)) is of finite order. In fact,

we can say more: #H1(Σ(K′,w), A(K∞,w)) ≤ c(p)
v where c

(p)
v = pordpcv .
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To show this we first note that as ΣK′ is pro-p and therefore so is Σ(K′,w).

So H1(Σ(K′,w),Φv(k∞,w)) = H1(Σ(K′,w),Φv(k∞,w)[p∞]). Also, Σ(K′,w) is
pro-cyclic, so Σ(K′,w) is a finite cyclic p-group or isomorphic to Zp.

If Σ(K′,w) is a finite cyclic p-group (and as Φv(k∞,w)[p∞] is finite), we

have #H1(Σ(K′,w),Φv(k∞,w)[p∞]) = #H2(Σ(K′,w),Φv(k∞,w)[p∞]). But
by the expression of cohomology in the finite cyclic case we have that

#H2(Σ(K′,w),Φv(k∞,w)[p∞]) ≤ c(p)
v . This shows the result in the case when

Σ(K′,w) is finite cyclic.
If Σ(K′,w) is isomorphic to Zp, let γ be a topological gener-

ator of Σ(K′,w). Then (again using that Φv(k∞,w)[p∞] is finite),

we see that H0(Σ(K′,w),Φv(k∞,w)[p∞]) = ker(Φv(k∞,w)[p∞]
γ−1−−→

Φv(k∞,w)[p∞]) has the same order as H1(Σ(K′,w),Φv(k∞,w)[p∞]) =

coker(Φv(k∞,w)[p∞]
γ−1−−→ Φv(k∞,w)[p∞]). So when Σ(K′,w) is isomorphic

to Zp, #H1(Σ(K′,w),Φv(k∞,w)[p∞]) = c
(p)
v .

(b) v archimedean: This case only becomes relevant when p = 2,
K ′v = R and K∞,w = C and in this case Proposition 3.5, shows that
H1(Σ(K′,w), A(K∞,w)) is finite.

We have shown that ker gK′ is finite and so therefore ker g′K′ is finite .
Combining this with the finiteness of kerhK′ and cokerhK′ (shown above)
and sequence (4), we see that ker sK′ and coker sK′ are indeed finite for any
K ′ ∈ E.
(B) Proof of part (i):
(B1) Statement about ker sK′ :

Now let’s prove part (i) of the Theorem A. Suppose A(K)[p] = 0. Then
Lemma 3.1 shows that A(K∞)[p∞] = 0. Therefore since as shown above
kerhK′ = H1(ΣK′ , A(K∞)[p∞]), we have that kerhK′ = 0 for all K ′ ∈ E

and so by sequence (4), we have that ker sK′ = 0 for all K ′ ∈ E.
(B2) Statement about coker sK′ :

Now assume condition (C) is satisfied. Then by sequence (4), to show that
coker sK′ = 0 for all n, it suffices to show that ker g′K′ = 0 and cokerhK′ =
0 for all K ′ ∈ E. Since (as shown from the sequence (7)) cokerhK′ ⊆
H2(ΣK′ , A(K∞)[p∞]), and as A(K∞)[p∞] = 0 (as in (B1)), we must have
that cokerhK′ = 0. So it remains to show that ker g′K′ vanishes for any
K ′ ∈ E and we will show this by showing that ker gK′ vanishes and as
gK′ = ⊕

v∈TK′
g(K′,v), we will show that ker g(K′,v) = 0 for all v ∈ TK′ .

First if v is archimedean, we only have to consider the case when K ′v = R
and K∞,w = C (and hence also p = 2). In this case, condition (C-ii) makes
ker g(K′,v) = 0 according to Proposition 3.5 (and the description of ker g(K′,v)

as above).
Next, let us consider the case of non-archimedean v:
First, if v | ṽ for some ṽ ∈ R:

In this case, by Mattuck’s Theorem we have that A(K ′v) = Zd[K′
v :Ql]

l ×D
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where D is a finite group, d is the dimension of A and l is the charac-
teristic of the residue field of K ′v. By our fundamental assumption on R,
we have that l 6= p, so A(K ′v) ⊗ Qp/Zp = 0. Similarly, we deduce the
same result for any K ′′ ⊇ K ′ and any v′′ lying over v, so by taking the
direct limit we also see that A(K∞,w) ⊗ Qp/Zp = 0 for any prime w of
K∞ above v. Therefore, by Kummer theory, we get that H1(K ′v, A)[p∞] =
H1(K ′v, A[p∞]) and H1(K∞,w, A)[p∞] = H1(K∞,w, A[p∞]), so we see that
in this case (from the inflation-restriction sequence and sequence (8)), that
ker g(K′,v) = H1(Σ(K′,w), A(K∞,w)[p∞]).

If v lies above some prime in the set S, then Σ(K′,w) = {0} and hence
ker g(K′,v) = 0. Therefore, we can ignore these primes. Otherwise v does not
lie above a prime in S. In this case condition (C-iii) together with Lemma
3.1 give that A(K∞,w)[p∞] = 0, so we conclude that ker g(K′,v) = 0.
Now consider the case of v - ṽ for all ṽ ∈ R:

As shown above in the proof of part (A) we have that ker g(K′,v) =

H1(Σ(K′,w),Φv(k∞,w)) where w is some prime of K∞ lying above v. Hence

we must show that H1(Σ(K′,w),Φv(k∞,w)) = 0. But as we noted above

#H1(Σ(K′,w),Φv(k∞,w)) ≤ c
(p)
v . So it suffices to show that c

(p)
v = 1. Recall

that c
(p)
v = #Φv(k

′
v)[p

∞] where k′v is the residue field of K ′v.
In regards to this let us note the following basic observation: Let ṽ ∈ T be

the prime lying below v, then Φṽ ×kṽ k′v = Φv. This follows from two facts.
First, if A is the Néron model of AKṽ , then A×Rṽ R

′
v is the Néron model of

AK′
v

(here Rṽ and R′v are the rings of integers of Kṽ and K ′v respectively).
This is because K ′v/Kṽ is unramified and Néron models are stable under
étale base change (see [1] 1.2 prop 2). Secondly, if V is an algebraic group
over a field F and L/F is a field extension, then π0(VL) = π0(V )×F L (see
[16] ch. 10 prop. 2.18) where π0(VL) and π0(V ) are the group of components
of VL and V . In our case the algebraic group is the special fiber of the Néron
model.

We have that Φṽ×kṽk′v = Φv, therefore c
(p)
v = #Φṽ(k

′
v)[p

∞]. Then to show

that c
(p)
v = 1, it suffices by Lemma 3.1 to show that c

(p)
ṽ = #Φṽ(kṽ)[p

∞] = 1,
because k′v/kṽ is pro-p. If A has good reduction at ṽ, then cṽ = 1, so we

only have to check that c
(p)
ṽ = 1 for ṽ ∈ B. If ṽ ∈ S, then Σ(K′,w) = {0} and

hence ker g(K′,v) = 0 (recall this is what we are trying to show). So we can
ignore the primes ṽ ∈ S. If ṽ ∈ (B∩Rp)\ (R∪S), then condition (C-i) gives

that c
(p)
ṽ = 1, so ker g(K′,v) = 0. If ṽ ∈ B \ (R∪Rp ∪S), then then condition

(C-i) gives that c
(p)
ṽ = 1 or that A(Kṽ)[p

∞] = {0}, so ker g(K′,v) = 0 either

by what we just mentioned about c
(p)
ṽ or (by Kummer theory) as in the proof

when ṽ ∈ R.
Combining the above we have that ker gK′ = 0, which as we discussed

gives that coker sK′ = 0. This completes the proof of part (i) of Theorem
A.
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(C) Proof of part (ii):
Choose K = K0 ⊂ K1... ⊂ Kn ⊂ ... to be a tower of fields each Galois

over K and with K∞ = ∪∞i=0Ki . To prove the statement in part (ii) about
the unboundedness of rp(ker sK′) and rp(coker sK′) (under the required con-
ditions) as K ′ varies over the set E, it suffices to prove that rp(ker sKn) and
rp(coker sKn) are unbounded with n (under the same conditions).

To simplify notation, for any n, we will let Σn denote ΣKn , Σn,w denote
Σ(Kn,w) and will denote sKn , gKn , g′Kn

and hKn by sn, gn, g′n and hn re-
spectively. Moreover, we will denote TKn by Tn and for any prime of v of
Kn we will denote g(Kn,v) and g′(Kn,v) by gn,v and g′n,v respectively.

(C1) Statement about ker sK′ :
Suppose that A(K)[p] 6= 0. Assume condition (C) is satisfied and Σ is not

p-adic analytic, we will show that rp(ker sn) is unbounded as n varies. To
show this, by sequence (4), it suffices to show that rp(kerhn) is unbounded
as n varies and that rp(ker g′n) is bounded as n varies (and the latter can be
shown if we show that rp(ker gn) is bounded as n varies).

First, let’s show that rp(kerhn) is unbounded with n: Since A(K∞)[p∞]
is finite by Theorem 2.5, and K∞ = ∪∞i=0Ki, there exists an N such that
A(K∞)[p∞] is rational over KN . Then for any n ≥ N we have Σn acts
trivially on A(K∞)[p∞]. Now as A(K)[p] 6= 0, therefore A(K∞)[p∞] contains
a subgroup of order p and as Σn acts trivially on A(K∞)[p∞], this subgroup
will be isomorphic to Z/pZ as a Σn-module.

Also, for any profinite group G and any abelian group B on which G
acts trivially, we have that H1(G,B) = Homcont(G,B). Therefore we have
for any n ≥ N that H1(Σn,Z/pZ) is a subgroup of H1(Σn, A(K∞)[p∞]).
Now as we assumed that Σ is not p-adic analytic, therefore by The-
orem 2.4 we have that rp(H

1(Σk,Z/pZ)) is unbounded as k varies and
as H1(Σn,Z/pZ) is a subgroup of H1(Σn, A(K∞)[p∞]) for n ≥ N , this
shows that rp(H

1(Σk, A(K∞)[p∞])) is unbounded as k varies. But as
we showed in the beginning of the proof of Theorem A, we have that
kerhk = H1(Σk, A(K∞)[p∞]), so rp(kerhk) is unbounded with k.

Now regarding the fact that rp(ker gn) is bounded with n, we in fact have
that ker gn = 0 because condition (C) is satisfied (we showed this when
proving part (i) above).
(C2) Statement about coker sK′ :

Now assume that rank(A(K ′)) is bounded as n varies, X(A/K ′)[p∞] is
finite for any K ′ ∈ E and K is totally imaginary if p = 2. Note that the last
statement forces K ′ to be totally imaginary if p = 2 for any K ′ ∈ E. We
will now show that rp(coker sn) is unbounded as n varies. By sequence (4),
to show this it suffices to show that rp(cokerhn) is unbounded with n and
that rp(coker g′n) is bounded with n.

First, let’s show that rp(cokerhn) is unbounded with n: The same ar-
gument above (in part C1) gives that A(K∞)[p∞] is finite (Theorem 2.5)
and that there exists a N such that Σn acts trivially on A(K∞)[p∞] for all
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n ≥ N . Now as A(K)[p] 6= 0, A(K∞)[p∞] is a non-trivial finite abelian
p-group. Then A(K∞)[p∞] has a direct summand isomorphic as an abelian
group to Z/pmZ for some m ≥ 1. Moreover since for all n ≥ N we have
that Σn acts trivially on A(K∞)[p∞], then for such an n this direct sum-
mand is isomorphic to Z/pmZ as a Σn-module. Now as a cohomology
commutes with direct sums we have that H2(Σn,Z/pmZ) is a subgroup
of H2(Σn, A(K∞)[p∞]) for all n ≥ N .

By the exact sequence (7), to show that rp(cokerhn) is unbounded
with n, it suffices to show that rp(H

2(Σn, A(K∞)[p∞])) is unbounded with
n and that rp(H

2(GT (Kn), A[p∞])) is bounded with n. To show that
rp(H

2(Σn, A(K∞)[p∞])) is unbounded, then it is enough to show that
rp(H

2(Σn,Z/pmZ)) is unbounded for all n ≥ N (as the latter group is a
subgroup of the former).

Now by Lemma 3.2 we have that for any n:

rp(H
2(Σn,Z/pmZ)) ≥ rp(H1(Σn,Z/pmZ))

and since we may consider H1(Σn,Z/pZ) as a subgroup of H1(Σn,Z/pmZ)
for any m (by a similar argument to the one we used when showing that
rp(kerhn) is unbounded), therefore

rp(H
2(Σn,Z/pmZ)) ≥ rp(H1(Σn,Z/pZ))

for all n. Hence to show that rp(H
2(Σk, A(K∞)[p∞])) is unbounded with k,

it is now enough to show that rp(H
1(Σk,Z/pZ)) is unbounded with k, but

this follows Theorem 2.4 because we assumed that Σ is not p-adic analytic.
Now let’s show that rp(H

2(GT (Kn), A[p∞])) is bounded with n. This is
an easy application of Proposition 3.7: If rank(A(Kn)) ≤ M for all n, then
since we assumed that X(A/Kn)[p∞] is finite for n and assumed K (and
hence Kn) to be totally imaginary if p = 2, Proposition 3.7 shows that for
any n we have that:

rp(H
2(GT (Kn), A[p∞])) ≤M + rp(A

t(Kn)tors) ≤M + 2d

where d is the dimension of A (=the dimension of At). Hence
rp(H

2(GT (Kn), A[p∞])) is indeed bounded with n. This shows that
rp(cokerhn) is unbounded with n.

Now let’s show that rp(coker g′n) is bounded. To prove this let’s consider
the following commutative diagram with exact rows:
(9)

0 // imgψK∞
// (lim−→

⊕
w∈Tm

H1(Km,w, A)[p∞])ΣK′ // cokerψK∞
// 0

0 // img λKn

g′n

OO

//
⊕
v∈Tn

H1(Kn,v, A)[p∞]

gn
OO

// cokerλKn

g′′n

OO

// 0
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From the above commutative diagram and the ker-coker sequence, to show
that rp(coker g′n) is bounded with n, it suffices to show that rp(ker g′′n) and
rp(coker gn) are both bounded with n.

Let’s first show that rp(coker gn) is bounded with n. It will be sufficient
for us to show that coker gn = 0 for n � 0 (it will be true that coker gn
is finite for all n, but we won’t need this). Recall that for any n we have
gn = ⊕

v∈Tn
gn,v. For every ṽ ∈ T we will show that coker gn,v = 0 for n � 0

and any v | ṽ.
Now let ṽ ∈ T : If ṽ is archimedean, it is clear that coker gn,v = 0 for any

n and any v | ṽ so we don’t have to worry about archimedean primes. Now
suppose that ṽ is non-archimedean. We will consider two cases:
(a) ṽ ∈ R:

First note that as in the proof of part (i) of Theorem A, for any n and
any v | ṽ, by Kummer theory (see also the remark after sequence (8) we
have gn,v is the restriction map: H1(Kn,v, A[p∞]) −→ H1(K∞,w, A[p∞])
and coker gn,v = H2(Σn,w, A(K∞,w)[p∞]). Now by our assumption on R, we
have that v does not lie above p. Also, K∞,w/Kṽ is a pro-p extension for any

w lying over ṽ. So K∞,w is contained in Ktr,p
ṽ ; the maximal pro-p tamely

ramified extension of Kṽ. If Knr,p
ṽ is the maximal unramified pro-p extension

of Kṽ we have Gal(Ktr,p
ṽ /Knr,p

ṽ ) ∼= Zp (see [22] Corollary 9.15). Therefore

Gal(Ktr,p
ṽ /Kṽ) ∼= Zp o Zp, a pro-p p-adic Lie group of dimension 2. We

conclude that Σw = Gal(K∞,w/Kṽ) is a pro-p p-adic Lie group of dimension
≤ 2 (note that the dimension of this group is of course independent of the
prime w above ṽ). We have three cases:
(a-1) Σw is finite (i.e. has dimension 0): Since K∞,w is the union of the
w-adic completions of the Kn’s and K∞,w/Kṽ is finite, it is easy to conclude
for large enough n that Σn,w will be trivial so coker gn,v = 0 for n� 0 and
v | ṽ.
(a-2) Σw has dimension 1: In this case Σw has an open normal subgroup
isomorphic to Zp (see [7] for this and other basic facts about p-adic Lie
groups). From this it is easy to conclude that for large enough n, Σn,w will
always be isomorphic to Zp and so for n� 0 and v | ṽ we have coker gn,v = 0
because Zp has cohomological dimension 1.

(a-3) Σw has dimension 2: In this case we must have K∞,w = Ktr,p
ṽ , so

the absolute Galois group of K∞,w has profinite order relatively prime to p.
Therefore, H1(K∞,w, A[p∞]) = 0 and so coker gn,v = 0 for any n and v | ṽ.
(b) ṽ /∈ R:

Recall that for any n and any v | ṽ, we have coker gn,v =
H2(Σn,w, A(K∞,w)). Also, by basically the same arguments when we
used when we considered ker gn,v, we have that H2(Σn,w, A(K∞,w)) =
H2(Σn,w,Φv(k∞,w)) (using Proposition 3.4 with i = 2). Now as discussed
before Σw is either a finite cyclic p-group or isomorphic to Zp. If Σw is finite,
then Σn,w will be trivial for sufficiently large n and so coker gn,v will also
be trivial. If Σw

∼= Zp, then Σn,w will also be isomorphic to Zp for any n
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and therefore coker gn,v = 0 because Zp has cohomological dimension 1 and
Φv(k∞,w) is a finite group.

We have therefore shown that coker gn = 0 for n � 0. As for rp(ker g′′n),
if we have that rank(A(K ′)) ≤ M , then by Proposition 3.7, we get that
rp(cokerλK) ≤ M + 2d where d is the dimension of A. So rp(ker g′′n) is
bounded since ker g′′n is contained cokerλK .

We have now shown that rp(coker g′n) is bounded with n, thus finally
completing the proof that rp(coker sK′) is unbounded (under the required
assumptions). �

Proof of Corollary A. For any K ′ ∈ E consider the maps:

sK′ : Selp(A/K
′) −→ Selp(A/K∞)Gal(K∞/K′)

s′K′ : Selp(A
′/K ′) −→ Selp(A

′/K∞)Gal(K∞/K′)

Under the assumptions of the corollary, we get by Theorem A that s′K′

is an isomorphism for all K ′ ∈ E. In particular as s′K is surject-

ive and Selp(A
′/K) = 0, we get that Selp(A

′/K∞)Gal(K∞/K) = 0 and
hence by Lemma 3.1, we get that Selp(A

′/K∞) = 0 which implies that
X(A′/K∞)[p∞] = 0.

Now as s′K′ is injective for all K ′ ∈ E and Selp(A
′/K∞) = 0, we get that

Selp(A
′/K ′) = 0 for any K ′ ∈ E. Therefore as A and A′ are isogenous over K

(and hence over K ′), we have that by Lemma 3.6, that Selp(A/K
′) is finite

for all K ′ ∈ E. So rank(A(K ′)) is bounded (by zero) for all K ′ ∈ E and
X(A/K ′)[p∞] is finite for all K ′ ∈ E. Therefore by Theorem A, we get that
rp(coker sK′) is unbounded as K ′ varies over the set E and hence as coker sK′

is a quotient of Selp(A/K∞)Gal(K∞/K′), we conclude that rp(Selp(A/K∞))
is infinite.

But now because Selp(A/K
′) is finite for all K ′ ∈ E, we must have the

A(K ′)⊗Qp/Zp = 0 for all K ′ ∈ E. Therefore A(K∞)⊗Qp/Zp = lim−→A(K ′)⊗
Qp/Zp = 0 and so by the exact sequence:

0 −→ A(K∞)⊗Qp/Zp −→ Selp(A/K∞) −→X(A/K∞)[p∞] −→ 0

we get that Selp(A/K∞) ∼= X(A/K∞)[p∞] so rp(X(A/K∞)[p∞]) is infinite
i.e. X(A/K∞)[p∞] contains an infinite elementary abelian p-group.

If the isogeny between A and A′ is of degree p, then as in Lemma
3.6, we have maps f̄ : X(A/K)[p∞] → X(A′/K)[p∞] and ḡ :
X(A′/K)[p∞] → X(A/K)[p∞] whose composites are multiplication by
p, but as X(A′/K∞)[p∞] = 0, we therefore get that p annihilates
X(A/K∞)[p∞] and so X(A/K∞)[p∞] = X(A/K∞)[p]. So in this case
X(A/K∞)[p∞] is itself an infinite elementary abelian p-group. �

Proof of Theorem B. Choose K = K0 ⊂ K1... ⊂ Kn ⊂ ... to be a tower
of fields each Galois over K and with K∞ = ∪∞i=0Ki. We will prove that
rp(X(A/Kn)) is unbounded with n. Let us denote TKn by Tn and ΣKn by



SELMER GROUPS AND GENERALIZED CLASS FIELD TOWERS 21

Σn. Also for any n, let K ′n be the fixed field of the commutator subgroup of
Σn. Now consider the following commutative diagram:

0 // Selp(A/Kn) // H1(GT (Kn), A[p∞]) //
∏
v∈Tn H

1(Kn,v, A)[p∞]

0 // Wn

?�

OO

// H1(Σab
n , A(K ′n)[p∞])
?�

OO

//
∏
v∈Tn H

1(∆v, A(K ′n))[p∞]
?�

OO

In the above diagram Wn is just the kernel of the lower map, the left two
vertical maps are inflation maps and ∆v (for v ∈ Tn) is the decomposition
group in Σab

n of a prime of K ′n above v chosen to make the diagram commute
(note that the top right map is induced by inflation followed by restrictions
to decomposition groups at chosen primes of Q above each v ∈ Tn).

Since condition (C) is satisfied, then by a similar argument to the one
used in the proof of Theorem A (part B2) we see that H1(∆v, A(K ′n))[p∞]
is trivial for any v ∈ Tn. Therefore the bottom right hand map is trivial. So
H1(Σab

n , A(K ′n)[p∞]) coincides with the kernel Wn proving that the image of
the inflation map H1(Σab

n , A(K ′n)[p∞]) ↪−→ H1(GT (Kn), A[p∞]) is contained
in Selp(A/Kn).

Now consider the following commutative diagram:

Selp(A/Kn)
� _

��

//X(A/Kn)
� _

��

H1(GT (Kn), A[p∞]) // H1(Kn, A)

H1(Σab
n , A(K ′n)[p∞])
?�

OO

// H1(Σab
n , A(K ′n))
?�

OO

In this diagram, the top two vertical maps are just natural inclusion and
the lower two vertical maps are inflation. Now as Σab

n is finite, we have that
K ′n/Q is a finite extension and so by the Mordell-Weil Theorem A(K ′n) is
finitely generated. Therefore, A(K ′n)[p∞] is a direct summand of A(K ′n).
This implies that the lower horizontal map in the diagram is an injection.
From this, the commutativity of the diagram and the fact that the image
of the lower left hand vertical arrow is contained in Selp(A/Kn) (which we

deduced above), we see thatH1(Σab
n , A(K ′n)[p∞]) injects (via the appropriate

map) into X(A/Kn). So to show that rp(X(A/Kn)) is unbounded with n

it suffices to show that rp(H
1(Σab

n , A(K ′n)[p∞])) is unbounded with n.

To show that rp(H
1(Σab

n , A(K ′n)[p∞])) is unbounded with n, we first note
that by Theorem 2.5 we have that A(K∞)[p∞] is finite. Therefore there
exists an N such that A(K∞)[p∞] is rational over KN . So for any n ≥ N
we have that Σab

n acts trivially on A(K ′n)[p∞] and so H1(Σab
n , A(K ′n)[p∞]) =

Hom(Σab
n , A(K ′n)[p∞]) . Moreover, as we assumed that A(K)[p] 6= {0},

therefore A(K ′n)[p∞] = A(K∞)[p∞] is a non-trivial finite abelian p-group.
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From these facts we see for any n ≥ N that we have:

rp(H
1(Σab

n , A(K ′n)[p∞])) = rp(Hom(Σab
n , A(K ′n)[p∞])) ≥ rp(Σab

n )

Therefore, to prove the theorem we only have to show that rp(Σ
ab
n ) is un-

bounded with n. But as Σ was assumed not to be p-adic analytic, this
follows from Theorem 2.4 since h1(Σn) = h1(Σab

n ) = rp(Σ
ab
n ). �

Remark. It would be interesting to strengthen Theorem B to show that
rp(X(A/K ′)) is bounded below by a linear function in [K ′ : K] i.e. a bound
of the form c[K ′ : K] + d where c and d are constants with c positive. If
such a lower bound exists, then using the method of proof of Theorem B
one should show that h1(ΣK′) ≥ c[K ′ : K] + d. Also, the method of proof
of Theorem B suggests that if such a lower bound exists, then it would only
be valid for all K ′ such that K ′ ⊇ K(A(K∞)[p∞]).

If G is not a p-adic analytic group, and H is a closed subgroup of G,
then a lower bound on h1(H) of the form c[G : H] + d is known for free
pro-p groups (see [23] Corollary 3.9.6). However, this does not apply to the
groups we are considering here, since for any number field K, ΣK has finite
abelianization and hence is not free pro-p. As to how h1(H) changes as
[G : H] grows is unknown in general for non-p-adic analytic groups. For a
discussion on this see section 3 of Hajir’s article [14].

Despite this fact that we do not know in general how h1(H) changes as
[G : H] grows, Hajir loc. cit. has shown for any positive c how to construct
number fields K with an infinite p-class field tower such that if Kn is the
n-th p-class field, then h1(Kn) ≥ c[Kn : K] + 1.

Let us give an example with p = 2 and c = 1 using Hajir’s method: the
field K = Q(

√
5 · 13 · 29 · 37 · 41 · 53 · 73 · 89,

√
−3) has an infinite 2-class

field tower with h1(Kn) ≥ [Kn : K]+1 for all n (this is a slight modification
of the example at the end of Hajir’s paper).

Now consider the elliptic curve A : y2 +xy+ y = x3−x2−x of conductor
17. This is the curve 17A4 in Cremona’s tables [6]. For this elliptic curve,
we have that cp = 1 for all primes p. As [K : Q] = 4, this implies by
Lemma 3.1 that (cv, 2) = 1 for all primes v of K. Therefore, condition (C)
is satisfied (with p = 2 and R = S = ∅) for the field K and the elliptic
curve A. We also have that A(Q) = Z/4Z. So by the discussion above we
have that r2(X(A/Kn)) ≥ [Kn : K] + 1 for all Kn ⊇ K(A(K∞)[2∞]).

However, one can show that A(K∞)[2∞] = A(Q) = Z/4Z. To show this,
assume the contrary i.e. that F/Q where F = Q(A(K∞)[2∞]) is a non-
trivial extension. Then some rational prime ramifies in F/Q (there are no
non-trivial extensions of Q with discriminant 1). Since A has bad reduction
only at the prime 17, it follows from the Criterion of Néron-Ogg-Shafarevich
that the only primes that can ramify in F/Q are the primes 2 and 17. But
ramification at these primes cannot occur in K∞/Q since the discriminant
of K is prime to both 2 and 17 and K∞/K is unramified at all primes.
This shows that A(K∞)[2∞] = A(Q) = Z/4Z. From this it follows that:
r2(X(A/Kn)) ≥ [Kn : K] + 1 for all n.



SELMER GROUPS AND GENERALIZED CLASS FIELD TOWERS 23

5. Further Considerations

The purpose of this section is to discuss what can be said regarding the
control theorem (Theorem A) if we let the set R there contain all the primes
of K above p. When Rp ⊆ R, many of the arguments used in the proof of
Theorem A fail. For example, it is possible for A(K∞)[p∞] to be infinite
in this case. For if the set R contains Rp ∪ B ∪ R∞, S = ∅ and A[p] is
rational over K, then K(A[p∞]) is contained in K∞ (the fact that A[p] is
rational over K ensures that K(A[p∞])/K is pro-p). Note that in this case
it is easy to prove that Selp(A/K∞) is trivial (see the discussion regarding
ker sK′ for an argument) and hence there is nothing to say in regards to a
control theorem.

In fact we will show that if Rp ⊆ R and, as in Mazur’s Control Theorem,
A has good ordinary reduction at all primes of K dividing p, then the control
theorem can fail in the sense that ker sK′ can be infinite and coker sK′ can
be infinite of unbounded Zp-corank as K ′ varies over E (see the discussion
after Prop 2.5 of [10] regarding what can happen in the supersingular case).

We will assume throughout this section, unless explicitly stated, that the

set S is empty and let K∞ = K
(p)

R,∅ where R is a finite set of primes of K

containing Rp.

ker sK′ can be infinite: This is easy. Suppose A[p] is rational over K
and R = Rp ∪ B ∪ R∞, then it is not hard to show that Selp(A/K∞) is
trivial. This is because by a direct limit argument as in diagram (2) we have
that Selp(A/K∞) is contained H1(GR(K∞), A[p∞]) where as before we have
GR(K∞) = Gal(KR/K∞) with KR the maximal extension of K unramified
outside of R. Since A[p] is rational over K, then K(A[p∞])/K is pro-p and
hence K(A[p∞]) is contained in K∞. So GR(K∞) acts trivially on A[p∞],
we have that

H1(GR(K∞), A[p∞]) = Homcont(GR(K∞), A[p∞])

and this is zero since A[p∞] is p-primary and GR(K∞) has no non-trivial pro-
p quotient. Therefore, Selp(A/K∞) is trivial and so ker sK′ = Selp(A/K

′)
can be infinite if rank(A(K ′)) is positive. Note that it is still possible for
ker sK′ to be infinite even if the set B is not contained in R. This can
be achieved by A = A1 ×K A2 be the product of two abelian varieties
A1 and A2 defined over K having bad reduction at primes in the sets
B1 and B2 respectively with B1 not contained in B2. One then lets R
be the set Rp ∪ B2 ∪ R∞. If A2[p] is rational over K, then ker sK′ con-
tains a copy of Selp(A2/K

′) and so can be infinite if rank(A2(K ′)) is positive.

coker sK′ can be infinite of unbounded Zp-corank : This is a more inter-
esting situation than ker sK′ . As we mentioned earlier, we will show this
when A (as in Mazur’s Control Theorem) has good ordinary reduction at



24 AHMED MATAR

all primes of K above p. Before proving the main result here, we will make
a few observations.

Assume that A has good ordinary reduction at all primes of K above p
and Rp is contained in R. Then if w is a prime of K∞ above p, K∞,w will be
deeply ramified in the sense of [4] (this is because Kcyc, the cyclotomic Zp-
extension of K, is contained in K∞). From this we have an exact sequence
(see loc. cit. and [9])

(10) 0→ Ãv(k
′
v)[p

∞]→ ker g(K′,v) → H1(Σ(K′,w), Ãv(k∞,w)[p∞])→ 0

where in the above Ãv is the reduction modulo v of the Néron model of A
over the ring of integers of K ′v, and k′v and k∞,w are the residue fields of K ′v
and K∞,w respectively.

Now to show that coker sK′ is infinite, it will be important to show that
ker g(K′,v) is infinite. As Ãv(k

′
v)[p

∞] is finite we see from the above exact
sequence that the finiteness of ker g(K′,v) is equivalent to the finiteness of

H1(Σ(K′,w), Ãv(k∞,w)[p∞]). There is an interesting case for which this latter
group is infinite. It is based on the following theorem of of Kuz’min [15],
which we quote from [23] X§8. Let us first introduce the following notation
for a number field K:
GR,p = Σ

R,∅

K,p
(using the notation in the introduction) where R is any finite

set of primes of K.
Gv,p the decomposition group of GR,p at a chosen prime above v.
Gv,p = Gal(Kv(p)/Kv) where v is a prime of K, Kv the completion and
Kv(p) the maximal pro-p extension of Kv.
Let us also denote the group of p-th roots of unity (in Q) by µp.

Theorem (Kuz’min). Let K be a totally imaginary number field with µp ⊆
K and let R ⊇ Rp be a finite set of primes of K. Suppose that for a prime
v ∈ R the group Gv,p is not open in GR,p (i.e. has infinite index). Then the
canonical map:

Gv,p −→ Gv,p

is an isomorphism, i.e. every p-extension of the local field Kv is realized by
a p-extension of the global field K which is unramified outside R.

We will now explain how H1(Σ(K′,w), Ãv(k∞,w)[p∞]) can in fact be infin-
ite. For simplicity we will work with K below rather than any K ′ ∈ E, but

the observations are easily seen to hold for any K ′ ∈ E. Suppose K∞ = K
(p)

R,∅
where R is a finite set of primes of K containing Rp and K is totally ima-
ginary containing µp as in the above theorem.

Let us also suppose that for our prime v ∈ Rp we have that Gv,p is
not open in GR,p (we will explain later how this can occur). Then by the
above theorem we have Σ(K,w) = Gv,p. So we are dealing with the group

H1(Gv,p, Ãv(k∞,w)[p∞]). Let us further suppose that Ãv(k∞,w)[p∞] is infin-

ite (which is of course possible) and denote Ãv(k∞,w)[p∞] by M . We now
claim the following:
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CLAIM : corankZp(H1(Gv,p,M)) = [Kv : Qp] corankZp(M), where for any
discrete p-primary abelian group D, corankZp(D) means the Zp-rank of the
Pontryagin dual of D in case it is finitely generated over Zp.

Note that by sequence (10), the above claim will imply that ker g(K,v) has
Zp-corank [Kv : Qp] corankZp(M). To show why the claim is true, we first

note that H1(Gv,p,M) is isomorphic to H1(Kv,M) via the inflation map.
To show this we only need to show that
H1(Gal(Kv/Kv(p)),M) = 0. But as Gal(Kv/Kv(p)) acts trivially on M ,
we have that

H1(Gal(Kv/Kv(p)),M) = Homcont(Gal(Kv/Kv(p)),M)

and this is zero since M is p-primary and Gal(Kv/Kv(p)) has no non-trivial
pro-p quotient.

So now we just have to show that the Zp-corank of H1(Kv,M) is as stated
above. For this we will need the following:

Lemma (Local Corank Lemma). Let Kv be a finite extension of Qp and

D a discrete Gal(Kv/Kv)-module with D ∼= (Qp/Zp)r for some r ≥ 1.
Let D′ = Hom(D,µp∞). Then H1(Kv, D) is Zp-cofinitely generated and
corankZp(H1(Kv, D)) is equal to

r[Kv : Qp] + corankZp(H0(Kv, D)) + rankZp(H0(Kv, D
′))

Regarding the above lemma the fact that H1(Kv, D) is Zp-cofinitely gen-
erated (i.e. its Pontryagin dual is finitely generated over Zp) can be deduced
form the fact that H1(Kv, D[p]) is finite. As for the statement about cor-
anks the idea is to write D = ∪nD[pn] and then to apply Tate’s local Euler
characteristic formula ([23] Th. 7.3.1) to D[pn]. Also, one uses Tate local
duality loc. cit. Th. 7.2.6 to show that H2(Kv, D) is dual to H0(Kv, D

′).
For details on the proof of the above lemma see [11] §3.

Let us now go back to our group H1(Kv,M). Now since Mdiv is
a Gal(Kv/Kv) submodule of M and H i(Kv,M/Mdiv) is finite for any
i = 0, 1, 2, therefore we may assume M is divisible to prove our required
claim. So under this assumption our claim will follow from the above Corank
Lemma if we can show that corankZp(H0(Kv,M)) and rankZp(H0(Kv,M

′))
are both zero.

This is clear for the group H0(Kv,M) because this is just Ãv(kv)[p
∞]

which is finite so its corank is zero. As for H0(Kv,M
′), this group is in fact

trivial because the inertia subgroup acts trivially on M but non-trivially
on µp∞ and also since any nontrivial homomorphism ϕ ∈ Hom(M,µp∞) is
necessarily surjective. Hence we have finally shown our claim.

Before stating the main result, along with the observations we just made
we need the following theorem of Zerbes [29]:

Theorem (Zerbes). Let K be a number field, p an odd prime and L/K a
Galois extension containing the cyclotomic Zp-extension of K. Suppose A
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is an elliptic curve defined over K. If A[p∞] is not rational over L, then
A(L)[p∞] is finite.

We can now state the main theorem here:

Theorem 5.1. Let p be an odd prime and K a number field containing µp.
Assume that A is an elliptic curve defined over K satisfying: (i) A has good
ordinary reduction at all primes of K above p, (ii) A does not have good

reduction everywhere (i.e. B is nonempty), and (iii) Ãv(kv)[p] 6= {0} for all
primes v of K lying above p (kv is the residue field at v). Let R be a finite
set of primes of K containing Rp but not containing B, with the additional
restriction: if R′ = R \Rp, then

#R′min ≥ 2 + 1
2 [K : Q] + #Rp + 2

√
1
2 [K : Q] + #Rp

With all the above assumptions we have the following result: for any
K ′ ∈ E if X(A/K ′)[p∞] is finite and rank(A(K ′)) < [K ′ : Q], then
corankZp(coker sK′) ≥ [K ′ : Q] − rank(A(K ′)). Also if for some K ′ ∈ E we
have X(A/K ′)[p∞] is finite and rank(A(K ′)) = 0, then corankZp(coker sK̃)

is unbounded as K̃ varies over E.

Proof. Let us first show that A(K∞)[p∞] is finite. To show this it will
suffice by Zerbes’s Theorem to show that A[p∞] is not rational over K∞:
since B ∩Rp = ∅, by the Criterion of Néron-Ogg-Shafarevich, we have that
every prime in B ramifies in K(A[p∞])/K. But B is not contained in R, so
A[p∞] is not rational over K∞. Hence A(K∞)[p∞] is finite.

Now it is simple to show that H1(ΣK′ , A(K∞)[p∞]) and
H2(ΣK′ , A(K∞)[p∞]) are finite. This by a similar argument to the
one used in Theorem A: [23] Th. 10.7.12 shows that H1(ΣK′ ,Z/pZ)
and H2(ΣK′ ,Z/pZ) are both finite. This together with the observation
(above) that A(K∞)[p∞] is finite and the fact that if G is a pro-p group,
then the only simple discrete p-primary G-module is Z/pZ (with trivial
action) immediately gives the finiteness of H1(ΣK′ , A(K∞)[p∞]) and
H2(ΣK′ , A(K∞)[p∞]). Also, as we noted in the proof of Theorem A, this
implies that kerhK′ and cokerhK′ are both finite.

Therefore by the exact sequence (4), we have that corankZp(coker sK′) =

corankZp(ker g′K′). We will now determine corankZp(ker gK′). Let KS
∞ =

K
(p)

R′,Rp
i.e. the maximal pro-p extension of K unramified outside R′ in which

Rp splits completely. Clearly KS
∞ is contained in K∞.

Moreover, the assumption on the cardinality of R′min implies by Lemma
2.3 that the extension KS

∞/K is infinite. Therefore, since Rp splits com-
pletely in KS

∞/K, we see that the decomposition group of ΣK at any prime
of K∞ lying above p must have infinite index in ΣK .

Let v be any prime of K above p and w any prime K∞ above v. Then
by what we have shown, it follows from Kuz’min’s Theorem, that the ex-
tension K∞,w/Kv coincides with the maximal pro-p extension of Kv. Also,
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our assumption (iii) on the elliptic curve A in the statement of the theorem

implies that kv(Ãv[p
∞])/kv is pro-p (where Ãv is the reduction modulo v of

the Néron model of A over the ring of integers of Kv). So since in particular
K∞,w/Kv contains the maximal unramified pro-p extension of Kv, we there-

fore see that Ãv(k∞,w)[p∞] = Ãv[p
∞] and so corankZp(Ãv(k∞,w)[p∞]) = 1.

Now let K ′ ∈ E and v a prime of K ′ above p and w a prime of K∞
above v. Then as we have shown that the decomposition group of w
in ΣK is not open, it therefore follows from the Claim (proceeding this
theorem) and the discussion surrounding it that: corankZp(ker g(K′,v)) =

[K ′v : Qp] corankZp(Ãv(k∞,w)[p∞]). But as we showed above we have

corankZp(Ãv(k∞,w)[p∞]) = 1, therefore corankZp(ker g(K′,v)) = [K ′v : Qp].
Now gK′ is a direct sum of g(K′,v) over a finite number of primes v which

include all the primes of K ′ dividing p. As we showed in the proof of
Theorem A, for any prime v of K ′ not dividing p, we have that ker g(K′,v)

is finite. Therefore only primes above p contribute to the Zp-corank of
ker gK′ . Adding up these coranks which we calculated above gives that
corankZp(ker gK′) = [K ′ : Q].

Suppose now that X(A/K ′)[p∞] is finite. Then the proof of Pro-
position 3.7 (using the Cassels-Poitou-Tate exact sequence) shows that
corankZp(cokerλK′) ≤ rank(A(K ′)). Therefore if rank(A(K ′)) < [K ′ : Q],
then by diagram (9) in the proof of Theorem A and its associated ker− coker
sequence, we see from our observations that corankZp(ker g′K′) ≥ [K ′ :
Q]− rank(A(K ′)). But as we showed in the beginning of this proof, we have
corankZp(coker sK′) = corankZp(ker g′K′). Therefore corankZp(coker sK′) ≥
[K ′ : Q]− rank(A(K ′)).

Now let’s prove the final statement of the theorem. Suppose that K ′ ∈
E, X(A/K ′)[p∞] is finite and rank(A(K ′)) = 0 i.e. Selp(A/K

′) is finite.
Note that the K ′cyc, the cyclotomic Zp-extension of K ′, is contained in
K∞ (because Rp is contained in R). So to show that corankZp(coker sK̃)

is unbounded as K̃ varies over E, by our observations above, it suffices to
show that corankZp(cokerλK′

n
) is bounded with n, where K ′n are the fields

associated to the Zp-extension K ′cyc/K ′.
This follows from Mazur’s Control Theorem: the proof of Corollary 4.9

to Mazur’s Control Theorem in [12], shows that corankZp(Selp(A/K
′
n))

is bounded when Selp(A/K
′) is finite. So we only have to show that

corankZp(cokerλK′
n
) ≤ corankZp(Selp(A/K

′
n)) for any n. This follows from

the proof of Proposition 3.7 (using the Cassels-Poitou-Tate exact sequence),
and the fact that corankZp(Selp(A/K

′
n)) = rankZp(Rp(A,K

′
n)) (note that

elliptic curves are self-dual i.e. At = A). �

Let us now give an example related to the above theorem. Consider the
elliptic curve A: y2 + y = x3 − x2 defined over Q of conductor 11 with
good ordinary reduction at 5. This is the modular curve X1(11). Note that

Ã5(F5) = Z/5Z. To give an example of the theorem for this elliptic curve,
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we will take p = 5, K = Q(µ5). Then A has bad reduction at the four primes
P11,1,P11,2,P11,3,P11,4 of K dividing 11. For the set R, we will take:

R = {P5,P31,1,P31,2,P31,3,P31,4,P41,1,P41,2,P41,3,P41,4,P61,1}
where P5 is the unique prime above 5 and the ones following it are the four
primes above 31, the four primes above 41 and P61,1 is any prime of K
above 61. This set R satisfies the required property in the statement of the
theorem.

In [5], it is shown that Selp(A/K) = {0}. From this, the above theorem
gives that corankZp(coker sK) = [K : Q] = 4 (the statement of the the-
orem gives that corankZp(coker sK) ≥ [K : Q], but the proof shows that
we also have corankZp(coker sK) ≤ [K : Q]). The theorem also gives that
corankZp(coker sK′) is unbounded as K ′ varies through the set E. Since

coker sK′ is a quotient of Selp(A/K∞)Gal(K∞/K′) which in turn is a subgroup
of Selp(A/K∞), we therefore see that:

dimQp( ̂Selp(A/K∞)⊗Zp Qp) =∞

where ̂Selp(A/K∞) is the Pontryagin dual of Selp(A/K∞).
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