PLUS/MINUS SELMER GROUPS AND ANTICYCLOTOMIC \mathbb{Z}_p -EXTENSIONS

AHMED MATAR

ABSTRACT. Let E/\mathbb{Q} be an elliptic curve, p a prime and K_{∞}/K the anticyclotomic \mathbb{Z}_p -extension of a quadratic imaginary field K. In this paper we prove two theorems. The first theorem shows that there is an intimate relationship between the Λ -corank of $\mathrm{Sel}_{p^{\infty}}(E/K_{\infty})$, the Λ -coranks of $\mathrm{Sel}_{p^{\infty}}^{\pm}(E/K_{\infty})$ and the vanishing of $H^2(G_S(K_{\infty}), E[p^{\infty}])$. The second theorem proves under suitable conditions that the Pontryagin dual of $\mathrm{Sel}_{p^{\infty}}^{\pm}(E/K_{\infty})$ has Λ -rank one and μ -invariant zero.

1. Introduction

Let K be an imaginary quadratic field with discriminant $d_K \neq -3, -4$ whose class number we will denote by h_K . Let p be an odd prime, K_{∞}/K be the anticyclotomic \mathbb{Z}_p -extension of K, $\Gamma = \operatorname{Gal}(K_{\infty}/K)$ and K_n the unique subfield of K_{∞} containing K such that $\operatorname{Gal}(K_n/K) \cong \mathbb{Z}/p^n\mathbb{Z}$. Denote $\Gamma_n = \Gamma^{p^n}$, $G_n = \Gamma/\Gamma_n$ and $R_n = \mathbb{F}_p[G_n]$.

Let $\Lambda = \mathbb{Z}_p[[\Gamma]]$ be the Iwasawa algebra attached to K_{∞}/K . Fixing a topological generator $\gamma \in \Gamma$ allows us to identify Λ with the power series ring $\mathbb{Z}_p[[T]]$. Also consider the "mod p" Iwasawa algebra $\overline{\Lambda} = \Lambda/p\Lambda = \mathbb{F}_p[[T]]$.

Now let E be an elliptic curve of conductor N defined over \mathbb{Q} with a modular parametrization $\pi: X_0(N) \to E$. Throughout the paper we assume that E has good supersingular reduction at p. Let S be a finite set of primes of K containing all the primes dividing pN. We let K_S be the maximal extension of K unramified outside S. Suppose now that L is a field with $K \subseteq L \subseteq K_S$. We let $G_S(L) = \operatorname{Gal}(K_S/L)$ and S_L be the set of primes of L above those in S. For simplicity, we will denote S_{K_n} by S_n and S_{K_∞} by S_∞ .

We now define the Selmer groups we will work with. For any n and m we let $\mathrm{Sel}_{p^m}(E/K_n)$ denote the p^m -Selmer group of E over K_n defined by

$$0 \longrightarrow \operatorname{Sel}_{p^m}(E/K_n) \longrightarrow H^1(G_S(K_n), E[p^m]) \longrightarrow \prod_{v \in S_n} H^1(K_{n,v}, E)[p^m].$$

We also define the p^{∞} -Selmer group of E over K_n as $\mathrm{Sel}_{p^{\infty}}(E/K_n) = \varinjlim \mathrm{Sel}_{p^m}(E/K_n)$.

Finally we define the p^m -Selmer group and the p^∞ -Selmer group of E over K_∞ as $\mathrm{Sel}_{p^m}(E/K_\infty) = \varinjlim_{n} \mathrm{Sel}_{p^m}(E/K_n)$ and $\mathrm{Sel}_{p^\infty}(E/K_\infty) = \varinjlim_{n} \mathrm{Sel}_{p^\infty}(E/K_n)$.

Let \mathfrak{p} be a prime of K_n above p. Following Kobayashi [14], we define the following subgroups of $E(K_{n,\mathfrak{p}})$

$$E^+(K_{n,\mathfrak{p}}) := \{ x \in E(K_{n,\mathfrak{p}}) \mid \operatorname{Tr}_{n/m+1}(x) \in E(K_{m,\mathfrak{p}}) \text{ for even } m : 0 \le m < n \}$$

$$E^{-}(K_{n,\mathfrak{p}}) := \{ x \in E(K_{n,\mathfrak{p}}) \mid \operatorname{Tr}_{n/m+1}(x) \in E(K_{m,\mathfrak{p}}) \text{ for odd } m : 0 \le m < n \}.$$

Following Kobayashi [14] and Iovita-Pollack [12], we define

$$0 \longrightarrow \operatorname{Sel}_p^{\pm}(E/K_n) \longrightarrow \operatorname{Sel}_p(E/K_n) \longrightarrow \prod_{\mathfrak{p}\mid p} \frac{H^1(K_{n,\mathfrak{p}}, E[p])}{E^{\pm}(K_{n,\mathfrak{p}}) \otimes \mathbb{F}_p}$$

and
$$\operatorname{Sel}_p^{\pm}(E/K_{\infty}) = \varinjlim_n \operatorname{Sel}_p^{\pm}(E/K_n)$$

Also we define

$$0 \longrightarrow \mathrm{Sel}_{p^{\infty}}^{\pm}(E/K_n) \longrightarrow \mathrm{Sel}_{p^{\infty}}(E/K_n) \longrightarrow \prod_{\mathfrak{p}|p} \frac{H^1(K_{n,\mathfrak{p}}, E[p^{\infty}])}{E^{\pm}(K_{n,\mathfrak{p}}) \otimes \mathbb{Q}_p/\mathbb{Z}_p}$$

and
$$\operatorname{Sel}_{p^{\infty}}^{\pm}(E/K_{\infty}) = \varinjlim_{n} \operatorname{Sel}_{p^{\infty}}^{\pm}(E/K_{n})$$

Finally, we need the definition of the fine p^{∞} -Selmer group of E/K_{∞} . This group is defined as

$$0 \longrightarrow R_{p^{\infty}}(E/K_{\infty}) \longrightarrow H^{1}(G_{S}(K_{\infty}), E[p^{\infty}]) \longrightarrow \prod_{v \in S_{\infty}} H^{1}(K_{\infty,v}, E[p^{\infty}])$$

Now for any n, let $S_p(E/K_n) := \varprojlim_m \operatorname{Sel}_{p^m}(E/K_n)$ (inverse limit with respect to maps induced by multiplication by p). Let \mathfrak{p} be a prime of K_n above p. We write $E(K_{n,\mathfrak{p}})_p := \varprojlim_m E(K_{n,\mathfrak{p}})/p^m$ for the p-adic completion of $E(K_{n,\mathfrak{p}})$ and define

 $E(K_{n,p})_p := \bigoplus_{\mathfrak{p}\mid p} E(K_{n,\mathfrak{p}})_p$. By the definition of the Selmer group, for any prime \mathfrak{p} of K_n dividing p, there is a natural map $\rho_{n,\mathfrak{p}}: S_p(E/K_n) \to E(K_{n,\mathfrak{p}})_p$. These maps induce a map $\rho_{n,p}: S_p(E/K_n) \to E(K_{n,p})_p$. By abuse of notation, if \mathfrak{p} is a prime of K_∞ above p, we have for any n a map $\rho_{n,\mathfrak{p}}$.

In what follows, if A is a Hausdorff, abelian locally-compact topological group we denote its Pontryagin dual by A^{dual} . Also, as is standard, we will denote a pseudo-isomorphism from Λ -modules A to B by $A \sim B$. Finally, for any rational prime v we will let c_v be the Tamagawa number of E at v.

Theorems A and B below rely on the results of Iovita-Pollack [12]. In order to invoke their results we will need to assume that p splits in K/\mathbb{Q} and that any prime of K above p is totally ramified in K_{∞}/K . For theorem B we will replace this second condition by the slightly stronger condition that p does not divide the class number of K. This condition that $p \nmid h_K$ is used in [17] prop 3.3 and this proposition is needed for the proof of theorem B.

Theorem A below shows that there is an intimate relationship between the Λ -corank of $\mathrm{Sel}_{p^{\infty}}(E/K_{\infty})$, the Λ -coranks of $\mathrm{Sel}_{p^{\infty}}^{\pm}(E/K_{\infty})$ and the Λ -corank of $R_{p^{\infty}}(E/K_{\infty})$. Another thing the theorem shows is that the growth formula $\mathrm{corank}_{\mathbb{Z}_p}(\mathrm{Sel}_{p^{\infty}}(E/K_n)) = p^n + O(1)$ follows from both $\mathrm{Sel}_{p^{\infty}}^{\pm}(E/K_{\infty})^{\mathrm{dual}}$ having Λ -rank one. This last statement was proven in [12] prop. 7.1 under the extra condition that $H^2(G_S(K_{\infty}), E[p^{\infty}]) = 0$. We remove this condition.

Theorem A. Assume that $p \geq 5$, all primes dividing pN split in K/\mathbb{Q} and both primes of K above p are totally ramified in K_{∞}/K . The following are equivalent

- (a) $\operatorname{Sel}_{p^{\infty}}(E/K_{\infty})^{\operatorname{dual}}$ has Λ -rank two
- (b) Both $\operatorname{Sel}_{p^{\infty}}^{\pm}(E/K_{\infty})^{\operatorname{dual}}$ have Λ -rank one
- (c) $\operatorname{corank}_{\mathbb{Z}_p}(\operatorname{Sel}_{p^{\infty}}(E/K_n)) = p^n + O(1)$ and $\operatorname{rank}_{\mathbb{Z}_p}(\operatorname{img} \rho_{n,p}) = p^n + O(1)$
- (d) $H^2(G_S(K_\infty), E[p^\infty]) = 0$ (e) $R_{p^\infty}(E/K_\infty)^{\text{dual}}$ is Λ -torsion

Under some conditions Çiperiani [4] has shown that $\mathrm{Sel}_{p^{\infty}}(E/K_{\infty})^{\mathrm{dual}}$ has Λ rank two and Longo-Vigni [15] have shown that both $\operatorname{Sel}_{n\infty}^{\pm}(E/K_{\infty})^{\operatorname{dual}}$ have Λ -rank one. If we impose the extra condition in [4] that both primes of K above p are totally ramified in K_{∞}/K , then the above theorem shows that in this case the results of Çiperiani and Longo-Vigni are equivalent.

By adapting the proof of the ordinary case in [17] to the plus/minus Selmer groups we will show

Theorem B. Assume the following

- (i) All the primes dividing pN split in K/\mathbb{Q}
- (ii) p does not divide $6h_K\varphi(Nd_K) \cdot \prod_{\ell \mid N} c_{\ell}$
- (iii) p does not divide the number of geometrically connected components of the kernel of $\pi_*: J_0(N) \to E$.

Then both $\mathrm{Sel}_{n^{\infty}}^{\pm}(E/K_{\infty})^{\mathrm{dual}}$ have Λ -rank one and μ -invariant zero

Under the conditions of theorem B, theorem B gives that both $\operatorname{Sel}_{n^{\infty}}^{\pm}(E/K_{\infty})^{\operatorname{dual}}$ have Λ -rank one and theorems A and B together imply that $\mathrm{Sel}_{p^{\infty}}(E/K_{\infty})^{\mathrm{dual}}$ has Λ-rank two. This gives a different proof to the results of Longo-Vigni [15] and Ciperiani [4]. Both of these cited results are proven under slightly less restrictive conditions. The advantage of imposing our extra conditions is that we also show that both $\operatorname{Sel}_{p^{\infty}}^{\pm}(E/K_{\infty})^{\operatorname{dual}}$ have μ -invariant zero. This result is analogous to theorem 3.4 of [18] which shows that $\mathrm{Sel}_{p^{\infty}}(E/K_{\infty})^{\mathrm{dual}}$ has μ -invariant zero in the case where E has good ordinary reduction at p.

It is an interesting question whether both $\mathrm{Sel}_{p^{\infty}}^{\pm}(E/K_{\infty})^{\mathrm{dual}}$ have μ -invariant zero implies that $\mathrm{Sel}_{p^{\infty}}(E/K_{\infty})^{\mathrm{dual}}$ has μ -invariant zero as well. As proposition 2.2 in the next section shows, we have a map $j: \mathrm{Sel}_{p^{\infty}}^+(E/K_{\infty}) \oplus \mathrm{Sel}_{p^{\infty}}^-(E/K_{\infty}) \to$ $\mathrm{Sel}_{p^{\infty}}(E/K_{\infty})$. One can attempt to use this map to relate the μ -invariants, however an understanding of the cokernel of the map j is needed. The author has not been able to get a handle on the μ -invariant of the Pontryagin dual of coker i and hence has been unable to deduce that $\mathrm{Sel}_{p^{\infty}}(E/K_{\infty})^{\mathrm{dual}}$ has μ -invariant zero.

In relation to the vanishing of the μ -invariant of $\mathrm{Sel}_{p^{\infty}}(E/K_{\infty})$, we would like to mention the following: in [18] the author conjectured (conjecture B) that $R_{p^{\infty}}(E/K_{\infty})^{\text{dual}}$ is cofinitely generated over \mathbb{Z}_p . Assuming that $H^2(G_S(K_\infty), E[p^\infty]) = 0$, it is interesting to note that this conjecture is equivalent to $\mathrm{Sel}_{p^\infty}(E/K_\infty)^{\mathrm{dual}}$ having μ -invariant zero. This equivalence follows from the main theorem of [19] if one notes that $E(K_{\infty})[p^{\infty}]$ is finite. The finiteness of $E(K_{\infty})[p^{\infty}]$ can be shown by taking a prime $q \nmid pN$ that is inert in K/\mathbb{Q} . The prime \mathfrak{q} of K above q splits completely in K_{∞}/K . Let \mathfrak{Q} be some prime of K_{∞} above \mathfrak{q} . Since the residue field $\mathbf{K}_{\infty,\mathfrak{Q}}$ of $K_{\infty,\mathfrak{Q}}$ is finite and $E(K_{\infty,\mathfrak{Q}})[p^{\infty}]$ injects into $E(\mathbf{K}_{\infty,\mathfrak{Q}})[p^{\infty}]$, the finiteness of $E(K_{\infty})[p^{\infty}]$ follows.

Remark. Let \mathfrak{p} be a prime of K_n above p and let \hat{E} be the formal group of E/\mathbb{Q} . Then $\hat{E}(K_{n,\mathfrak{p}})$ is isomorphic to $E_1(K_{n,\mathfrak{p}}) = \ker(E(K_{n,\mathfrak{p}})) \to \bar{E}(\mathbf{K}_{\mathfrak{p}})$ where $\mathbf{K}_{\mathfrak{p}}$ is the residue field of $K_{n,\mathfrak{p}}$. We then define $\hat{E}^{\pm}(K_{n,\mathfrak{p}}) \cong E_1(K_{n,\mathfrak{p}}) \cap E^{\pm}(K_{n,\mathfrak{p}})$. Since E has supersingular reduction at p, therefore $E(\mathbf{K}_{\mathfrak{p}})[p] = 0$. It follows that we have an isomorphism $\hat{E}^{\pm}(K_{n,\mathfrak{p}}) \otimes \mathbb{Q}_p/\mathbb{Z}_p \cong E^{\pm}(K_{n,\mathfrak{p}}) \otimes \mathbb{Q}_p/\mathbb{Z}_p$. The plus/minus Selmer groups defined in [12] are defined as $\mathrm{Sel}_{p^{\infty}}^{\pm}(E/K_n)$ but with $E^{\pm}(K_{n,\mathfrak{p}}) \otimes \mathbb{Q}_p/\mathbb{Z}_p$ replaced with $\hat{E}^{\pm}(K_{n,\mathfrak{p}}) \otimes \mathbb{Q}_p/\mathbb{Z}_p$. By what we just explained, it follows that $\mathrm{Sel}_{p^{\infty}}^{\pm}(E/K_n)$ is identical to the Selmer group defined in [12].

2. Proof of Theorem A

In this section we prove theorem A in the introduction. First we make a few definitions. Let $\Phi_n(X) = \sum_{i=0}^{p-1} X^{ip^{n-1}}$ be the p^n -th cyclotomic polynomial and $\omega_n(X) = (X+1)^{p^n} - 1$. Also set

$$\tilde{\omega}_n^+ = \prod_{\substack{1 \le m \le n \\ m \text{ even}}} \Phi_m(X+1), \quad \tilde{\omega}_n^- = \prod_{\substack{1 \le m \le n \\ m \text{ odd}}} \Phi_m(X+1), \quad \tilde{\omega}_0^{\pm} = 1$$

 $\omega_n^+ = X \cdot \tilde{\omega}_n^+$ and $\omega_n^- = X \cdot \tilde{\omega}_n^-$. Note that $\omega_n = X \cdot \tilde{\omega}_n^+ \cdot \tilde{\omega}_n^-$ For any $n \ge 0$ we define

$$q_n = \begin{cases} p^n - p^{n-1} + p^{n-2} - p^{n-3} + \dots + p^2 - p + 1 & \text{if } 2 | n \\ p^n - p^{n-1} + p^{n-2} - p^{n-3} + \dots + p - 1 + 1 & \text{if } 2 \nmid n \end{cases}$$

 q_n is the degree of ω_n^+ or ω_n^- depending on whether n is even or odd, respectively. We also define

$$0 \longrightarrow \operatorname{Sel}_{p^{\infty}}^{1}(E/K_{n}) \longrightarrow \operatorname{Sel}_{p^{\infty}}(E/K_{n}) \longrightarrow \prod_{\mathfrak{p}\mid p} \frac{H^{1}(K_{n,\mathfrak{p}}, E[p^{\infty}])}{E(\mathbb{Q}_{p}) \otimes \mathbb{Q}_{p}/\mathbb{Z}_{p}}$$

Let
$$\operatorname{Sel}_{p^{\infty}}^{1}(E/K_{\infty}) := \varinjlim_{n} \operatorname{Sel}_{p^{\infty}}^{1}(E/K_{n})$$

For any n we write $\operatorname{Tr}_{n/n-1}$ for the trace $\operatorname{Tr}_{K_n/K_{n-1}}$ or $\operatorname{Tr}_{K_{n,v}/K_{n-1,v}}$ where v is a prime of K_n . It will be clear to the reader whether we mean the global or local trace.

We now define our Heegner points. We fix a modular parametrization $\pi: X_0(N) \to E$ which maps the cusp ∞ of $X_0(N)$ to the origin of E (see [26] and [3]). If we assume that every prime dividing N splits in K/\mathbb{Q} , then it follows that we can choose an ideal \mathcal{N} such that $\mathcal{O}_K/\mathcal{N} \cong \mathbb{Z}/N\mathbb{Z}$. Let m be an integer that is relatively prime to N and let $\mathcal{O}_m = \mathbb{Z} + m\mathcal{O}_K$ be the order of conductor m in K. The ideal $\mathcal{N}_m = \mathcal{N} \cap \mathcal{O}_m$ satisfies $\mathcal{O}_m/\mathcal{N}_m \cong \mathbb{Z}/N\mathbb{Z}$ and therefore the natural projection of complex tori:

$$\mathbb{C}/\mathcal{O}_m \to \mathbb{C}/\mathcal{N}_m^{-1}$$

is a cyclic N-isogeny, which corresponds to a point of $X_0(N)$. Let $\alpha[m]$ be its image under the modular parametrization π . From the theory of complex multiplication we have that $\alpha[m] \in E(K[m])$ where K[m] is the ring class field of K of conductor m.

We assume that all primes of K above p are totally ramified in K_{∞}/K . This implies that K_{∞}/K and K[1]/K are linearly disjoint (K[1] is the Hilbert class field of K). It follows from this that for any $n \geq 1$ that $K[p^{n+1}]$ is the ring class field of

minimal conductor that contains K_n . For any $n \ge 0$, we now define $\alpha_n \in E(K_n)$ to be the trace from $K[p^{n+1}]$ to K_n of $\alpha[p^{n+1}]$.

Let $p \geq 5$ be a prime. Assume that p splits in K/\mathbb{Q} . From section 3.3 of [23] it follows that

$$Tr_{1/0}(\alpha_1) = (a_p - (a_p - 2)^{-1}(p-1))\alpha_0 \tag{1}$$

$$\operatorname{Tr}_{n+1/n}(\alpha_{n+1}) = a_p \alpha_n - \alpha_{n-1} \quad \text{for } n \ge 1$$
 (2)

Since E has supersingular reduction at p and $p \ge 5$, $a_p = 0$ so therefore we have

$$\operatorname{Tr}_{1/0}(\alpha_1) = \frac{p-1}{2}\alpha_0 \tag{3}$$

$$\operatorname{Tr}_{n+1/n}(\alpha_{n+1}) = -\alpha_{n-1} \quad \text{for } n \ge 1$$

Lemma 2.1. Assume that $p \geq 5$, all primes dividing pN split in K/\mathbb{Q} and all primes of K above p are totally ramified in K_{∞}/K . For any $n \geq 0$ we have $\omega_{2n}^+\alpha_{2n}=0$ and $\omega_{2n+1}^-\alpha_{2n+1}=0$

Proof. From equation (4) above we have $\omega_{2n}^+\alpha_{2n}=(\gamma-1)\tilde{\omega}_{2n}^+\alpha_{2n}=(\gamma-1)\pm\alpha_0=0$. A similar proof using also equation (3) shows that $\omega_{2n+1}^-\alpha_{2n+1}=0$

We will need the following three intermediate results before proving theorem A

Proposition 2.2. Assume that $p \geq 5$, p splits in K/\mathbb{Q} and all primes of K above p are totally ramified in K_{∞}/K . For any $n \geq 0$ we have exact sequences

$$0 \longrightarrow K \stackrel{i}{\longrightarrow} \mathrm{Sel}_{p^{\infty}}^{+}(E/K_{n}) \oplus \mathrm{Sel}_{p^{\infty}}^{-}(E/K_{n}) \stackrel{j}{\longrightarrow} \mathrm{Sel}_{p^{\infty}}(E/K_{n}) \longrightarrow C \longrightarrow 0$$

$$0 \longrightarrow K^{\omega_n^{\pm}=0} \stackrel{i}{\longrightarrow} \mathrm{Sel}_{p^{\infty}}^+(E/K_n)^{\omega_n^{+}=0} \oplus \mathrm{Sel}_{p^{\infty}}^-(E/K_n)^{\omega_n^{-}=0} \stackrel{j}{\longrightarrow} \mathrm{Sel}_{p^{\infty}}(E/K_n) \longrightarrow C' \longrightarrow 0$$

where i is the diagonal embedding, j is $(x,y) \mapsto x - y$, $K = \operatorname{Sel}_{p^{\infty}}^{1}(E/K_n)$ and C, C' are finite.

Proof. The description of the kernels of the maps j above follow from [12] prop. 4.11 and lemma 4.13. Clearly, the finiteness of C will follow from the finiteness of C'. The latter is essentially proposition 10.1 of Kobayashi's paper [14]. Given $P \in \operatorname{Sel}_{p^{\infty}}(E/K_n)_{\text{div}}$ Kobayashi finds $P^+ \in \operatorname{Sel}_{p^{\infty}}^+(E/K_n)$ and $P^- \in \operatorname{Sel}_{p^{\infty}}^-(E/K_n)$ such that $j(P^+, P^-) = P$. We only need to show that $\omega_n^+ P^+ = 0$ and $\omega_n^- P^- = 0$. For a suitably chosen $Q \in \operatorname{Sel}_{p^{\infty}}(E/K_n)$, $A, B \in \mathbb{Z}_p[X]$ Kobayashi defines $P^+ = A(\gamma - 1)\tilde{\omega}_n^- Q$ and $P^- = B(\gamma - 1)\omega_n^+ Q$. Since $\omega_n^+ \tilde{\omega}_n^- = \gamma^{p^n} - 1$ and $(\gamma^{p^n} - 1)Q = 0$ therefore we see that $\omega_n^+ P^+ = 0$. Similarly one shows that $\omega_n^- P^- = 0$.

Proposition 2.3. Assume that $p \geq 5$, all primes dividing pN split in K/\mathbb{Q} and all primes of K above p are totally ramified in K_{∞}/K . Let \mathfrak{p} be a prime of K_{∞} above p. Then we have $\operatorname{rank}_{\mathbb{Z}_p}(\operatorname{img} \rho_{n,\mathfrak{p}}) \geq p^n + O(1)$

Proof. To prove this proposition we adapt Bertolini's strategy ([2] prop. 5.2 and theorem 5.3) from the ordinary case to the supersingular case. We will need to consider the Heegner points α_{2n} and α_{2n+1} separately. For any n, let $E(K_n)_p := E(K_n) \otimes \mathbb{Z}_p$ be the p-adic completion of $E(K_n)$. Denote by $\mathcal{E}(E/K_n)_p$ the submodule $\mathbb{Z}_p[G_n]\alpha_n$ of $E(K_n)_p$ spanned by the group ring $\mathbb{Z}_p[G_n]$ acting on α_n . We claim that for any n the map $\operatorname{res}_n : E(K_n)_p \to E(K_{n+1})_p$ induced by inclusion is injective. To see this, we show that for any m the map induced by inclusion $\operatorname{res}_{n,p^m} : E(K_n)/p^m \to E(K_{n+1})/p^m$ is injective. Suppose that $P \in E(K_n)$ satisfies $p^mQ = P$ for some $Q \in E(K_{n+1})$. Let σ be a generator of $\operatorname{Gal}(K_{n+1}/K_n)$. Then we have $p^m(\sigma(Q) - Q) = \sigma(p^mQ) - p^mQ = \sigma(P) - P = 0$. But by [12] lemma 2.1 we have $E(K_\infty)[p^\infty] = \{0\}$. Therefore $\sigma(Q) - Q = 0$ which implies that $Q \in E(K_n)$. This shows that $\operatorname{res}_{n,p^m}$ is injective which, in turn, shows that res_n is injective.

Now consider the restriction of res_n to $\mathcal{E}(E/K_n)$ res_n : $\mathcal{E}(E/K_n) \to \operatorname{res}_n(\mathcal{E}(E/K_n))$. As res_n is injective, res_n is an isomorphism. We now consider the Heegner points α_{2k} . The norm relation (4) shows that for any $n \geq 1$ we have $\operatorname{Tr}_{2n/2n-1}(\mathcal{E}(E/K_{2n})) = \operatorname{img} \operatorname{res}_{2n-2}$ and so $\operatorname{res}_{2n-2}^{-1} \circ \operatorname{Tr}_{2n/2n-1}$ defines a surjective map $\mathcal{E}(E/K_{2n}) \to \mathcal{E}(E/K_{2n-2})$. Using these maps, we define $\mathcal{E}^{\dagger}(E/K_{\infty})_p^+ := \lim_{n \to \infty} \mathcal{E}(E/K_{2n})_p$. This is a cyclic Λ -module which is nonzero if and only if for some $n \in \mathbb{R}$ $n \in \mathbb{R}$ has infinite order (note that $n \in \mathbb{R}$ $n \in \mathbb{R}$ by [12] lemma 2.1). Using the results of Cornut [6] and Cornut-Vatsal [7] it can be shown as in [17] prop. 4.1 that $n \in \mathbb{R}$ has infinite order for some n. Hence $\mathcal{E}^{\dagger}(E/K_{\infty})_p^+$ is a nonzero cyclic n-module.

We now turn to the local setting. Let \hat{E} be the formal group of E/\mathbb{Q} . Combining Mattuck's theorem, [12] lemma 2.1 and [25] IV prop. 2.3, we see that $\hat{E}(K_{n,\mathfrak{p}})$ is a free \mathbb{Z}_p -module. Therefore $\varprojlim \hat{E}(K_{n,\mathfrak{p}})/p^m = \hat{E}(K_{n,\mathfrak{p}})$. Now $\hat{E}(K_{n,\mathfrak{p}})$ is isomorphic

to $E_1(K_{n,\mathfrak{p}}) = \ker(E(K_{n,\mathfrak{p}})) \to \bar{E}(\mathbb{F}_p)$. Since E has supersingular reduction at p, therefore $\bar{E}(\mathbb{F}_p)[p] = \{0\}$. This implies that $\hat{E}(K_{n,\mathfrak{p}}) = \varprojlim \hat{E}(K_{n,\mathfrak{p}})/p^m = 0$

 $E(K_{n,\mathfrak{p}})_p$. Define $\hat{E}^{\pm}(K_{n,\mathfrak{p}}) \cong E_1(K_{n,\mathfrak{p}}) \cap E^{\pm}(K_{n,\mathfrak{p}})$ where $E^{\pm}(K_{n,\mathfrak{p}})$ is defined as in the introduction. Since $\hat{E}(K_{n,\mathfrak{p}})$ is a free \mathbb{Z}_p -module so are both $\hat{E}^{\pm}(K_{n,\mathfrak{p}})$.

Theorem 4.5 of [12] shows that there exist $d_n \in \hat{E}(K_{n,\mathfrak{p}})$ such that $\operatorname{Tr}_{n+1/n}(d_{n+1}) = -d_{n-1}$ (for $n \geq 1$) and $\operatorname{Tr}_{1/0}(d_1) = u \cdot d_0$ for some $u \in \mathbb{Z}_p^{\times}$. From (3) and (4) we see that the norm relations for the Heegner points α_n and the points d_n are identical. Lemma 4.13 of [12] shows that for any $n \geq 0$ we have $\hat{E}^+(K_{2n,\mathfrak{p}}) = \mathbb{Z}_p[G_n]d_{2n}$ and $\hat{E}^-(K_{2n+1,\mathfrak{p}}) = \mathbb{Z}_p[G_n]\alpha_{2n+1}$. We shall work with \hat{E}^+ now. By what we just mentioned, we see as in the global case, that we may form the inverse limit $\hat{E}^{\dagger}(K_{\infty,\mathfrak{p}})^+ := \lim_{n \to \infty} \hat{E}^+(K_{2n,\mathfrak{p}})$.

CLAIM: $\hat{E}^{\dagger}(K_{\infty,\mathfrak{p}})^+$ is a free Λ -module of rank 1 such that for any n the natural map $\pi_{2n}^+: \hat{E}^{\dagger}(K_{\infty,\mathfrak{p}})^+/\omega_{2n}^+ \to \hat{E}^+(K_{2n,\mathfrak{p}})$ is an isomorphism (this map exists because of the analog of lemma 2.1 for the points d_{2n}).

To see this, let $n \geq 0$. Since the maps defining the inverse limit $\hat{E}^{\dagger}(K_{\infty,\mathfrak{p}})^+$ are surjective, therefore π_{2n}^+ is surjective. Prop. 4.15(3) of [12] shows that $\operatorname{rank}_{\mathbb{Z}_p}(\hat{E}^+(K_{2n,\mathfrak{p}})) = \operatorname{rank}_{\mathbb{Z}_p}(\Lambda/\omega_{2n}^+) = q_{2n}$. Therefore from the surjectivity of π_{2n}^+ , it follows that $\operatorname{rank}_{\mathbb{Z}_p}(\hat{E}^{\dagger}(K_{\infty,\mathfrak{p}})^+/\omega_{2n}^+)$ is unbounded and hence $\hat{E}^{\dagger}(K_{\infty,\mathfrak{p}})^+$ is a free Λ -module of rank 1 since it is cyclic and not torsion. The injectivity of π_{2n}^+ follows from comparing the \mathbb{Z}_p -ranks of the domain and codomain of π_{2n}^+ .

Consider the localization map $\tilde{\rho}_{2n,\mathfrak{p}}: \mathcal{E}(E/K_{2n})_p \to E(K_{2n,\mathfrak{p}})_p$. Lemma 2.1 implies that $\operatorname{img} \tilde{\rho}_{2n,\mathfrak{p}} \subseteq \hat{E}^+(K_{2n,\mathfrak{p}})$. Therefore we get a map $\tilde{\rho}_{\infty,\mathfrak{p}}^+: \mathcal{E}^{\dagger}(E/K_{\infty})_p^+ \to \hat{E}^{\dagger}(K_{\infty,\mathfrak{p}})^+$. Since $\mathcal{E}^{\dagger}(E/K_{\infty})_p^+$ is a cyclic Λ -module and $\hat{E}^{\dagger}(K_{\infty,\mathfrak{p}})^+$ is torsion-free, therefore $\tilde{\rho}_{\infty,\mathfrak{p}}^+$ is injective if and only if it is nonzero. This is equivalent to saying that $\tilde{\rho}_{2n,\mathfrak{p}}$ is nonzero for some n. As explained before, α_{2n} has infinite order for some n and hence $\tilde{\rho}_{2n,\mathfrak{p}}(\alpha_{2n})$ is nonzero. This shows that $\tilde{\rho}_{\infty,\mathfrak{p}}^+$ is injective.

We now determine $\operatorname{rank}_{\mathbb{Z}_p}(\operatorname{img} \tilde{\rho}_{2n,\mathfrak{p}})$. Fix an isomorphism $\tilde{E}^{\dagger}(K_{\infty,\mathfrak{p}})^+ \cong \Lambda$. As $\tilde{\rho}_{\infty,\mathfrak{p}}^+$ is injective, we may identify $\mathcal{E}^{\dagger}(E/K_{\infty})_p^+$ with $f\Lambda$ for some nonzero $f \in \Lambda$. From the claim above we have

$$\operatorname{rank}_{\mathbb{Z}_p}(\operatorname{img} \tilde{\rho}_{2n,\mathfrak{p}}) = \operatorname{rank}_{\mathbb{Z}_p}(f\Lambda + \omega_{2n}^+ \Lambda/\omega_{2n}^+ \Lambda)$$

$$= \operatorname{rank}_{\mathbb{Z}_p}(f\Lambda/f\Lambda \cap \omega_{2n}^+ \Lambda)$$

$$= \operatorname{rank}_{\mathbb{Z}_p}(f\Lambda/\omega_{2n}^+ f\Lambda) - \operatorname{rank}_{\mathbb{Z}_p}(f\Lambda \cap \omega_{2n}^+ \Lambda/\omega_{2n}^+ f\Lambda)$$

Since $\operatorname{rank}_{\mathbb{Z}_p}(f\Lambda/\omega_{2n}^+f\Lambda) = q_{2n}$ and $\operatorname{rank}_{\mathbb{Z}_p}(f\Lambda\cap\omega_{2n}^+\Lambda/\omega_{2n}^+f\Lambda)$ is bounded therefore we get that $\operatorname{rank}_{\mathbb{Z}_p}(\operatorname{img}\tilde{\rho}_{2n,\mathfrak{p}}) = q_{2n} + O(1)$

In an almost identical fashion, one considers the Heegner points α_{2n+1} and the group $\hat{E}^-(K_{2n+1,\mathfrak{p}})$ and constructs the appropriate inverse limits. If one then defines $\tilde{\rho}_{2n+1,\mathfrak{p}}$ analogously as above, one can show that $\operatorname{rank}_{\mathbb{Z}_p}(\operatorname{img}\tilde{\rho}_{2n+1,\mathfrak{p}}) = q_{2n+1} + O(1)$.

We can now finally complete the proof. Let $n \geq 1$. Define $B := \mathbb{Z}_p[G_n]\alpha_n$, $C := \mathbb{Z}_p[G_n]\alpha_{n-1}$ and let $A := B + C \subseteq E(K_n)_p$. Then we have

$$\operatorname{rank}_{\mathbb{Z}_p}(\rho_{n,\mathfrak{p}}(A)) = \operatorname{rank}_{\mathbb{Z}_p}(\operatorname{img}\tilde{\rho}_{n,\mathfrak{p}}) + \operatorname{rank}_{\mathbb{Z}_p}(\operatorname{img}\tilde{\rho}_{n-1,\mathfrak{p}}) - \operatorname{rank}_{\mathbb{Z}_p}(\rho_{n,\mathfrak{p}}(B) \cap \rho_{n,\mathfrak{p}}(C))$$

$$= q_n + O(1) + q_{n-1} + O(1) - \operatorname{rank}_{\mathbb{Z}_p}(\rho_{n,\mathfrak{p}}(B) \cap \rho_{n,\mathfrak{p}}(C))$$

$$= p^n + 1 - \operatorname{rank}_{\mathbb{Z}_p}(\rho_{n,\mathfrak{p}}(B) \cap \rho_{n,\mathfrak{p}}(C)) + O(1)$$

Now note that $\rho_{n,\mathfrak{p}}(B) \cap \rho_{n,\mathfrak{p}}(C) \subseteq \hat{E}^+(K_{n,\mathfrak{p}}) \cap \hat{E}^-(K_{n,\mathfrak{p}})$. By [12] prop. 4.11, $\hat{E}^+(K_{n,\mathfrak{p}}) \cap \hat{E}^-(K_{n,\mathfrak{p}}) = \hat{E}(\mathbb{Q}_p)$. Since $\operatorname{rank}_{\mathbb{Z}_p}(\hat{E}(\mathbb{Q}_p)) = 1$, it therefore follows from the above that $\operatorname{rank}_{\mathbb{Z}_p}(\rho_{n,\mathfrak{p}}(A)) = p^n + O(1)$. This implies that $\operatorname{rank}_{\mathbb{Z}_p}(\operatorname{img} \rho_{n,\mathfrak{p}}) \geq p^n + O(1)$ which completes the proof of the proposition.

Lemma 2.4. Assume that p splits in K/\mathbb{Q} . For any $n \geq 0$, the map $\mathrm{Sel}_{p^{\infty}}^{1}(E/K) \to \mathrm{Sel}_{p^{\infty}}^{1}(E/K_n)^{\Gamma}$ induced by restriction is an injection with finite cokernel.

Proof. Define S to be the set of primes of K dividing Np and S_n to be the primes of K_n above those in S. Now define K_S to be the maximal extension of K unramified outside S, $G_S(K) = \operatorname{Gal}(K_S/K)$ and $G_S(K_n) = \operatorname{Gal}(K_S/K_n)$. Let \mathfrak{p}_1 and \mathfrak{p}_2 be the primes of K_n above p. We define $\mathcal{P}_p(E/K_n) = \prod_{i=1,2} (H^1(K_{n,\mathfrak{p}_i}, E[p^\infty])/(E(\mathbb{Q}_p) \otimes \mathbb{Q}_p/\mathbb{Z}_p))$ and $\mathcal{P}_*(E/K_n) = \prod_{v \in S_n \setminus \{\mathfrak{p}_1,\mathfrak{p}_2\}} H^1(K_{n,v}, E)[p^\infty]$. Similarly we define $\mathcal{P}_p(E/K)$ and $\mathcal{P}_*(E/K)$.

We have a commutative diagram

$$0 \longrightarrow \operatorname{Sel}_{p^{\infty}}^{1}(E/K_{n})^{\Gamma} \longrightarrow H^{1}(G_{S}(K_{n}), E[p^{\infty}])^{\Gamma} \longrightarrow \mathcal{P}_{p}(E/K_{n})^{\Gamma} \times \mathcal{P}_{*}(E/K_{n})^{\Gamma}$$

$$\uparrow s \qquad \qquad \uparrow h \qquad \qquad \uparrow g$$

$$0 \longrightarrow \operatorname{Sel}_{p^{\infty}}^{1}(E/K) \longrightarrow H^{1}(G_{S}(K), E[p^{\infty}]) \stackrel{\psi}{\longrightarrow} \mathcal{P}_{p}(E/K) \times \mathcal{P}_{*}(E/K)$$

$$(5)$$

Applying the snake lemma to the above diagram we get

$$0 \to \ker s \to \ker h \to \ker q \cap \operatorname{img} \psi \to \operatorname{coker} s \to \operatorname{coker} h$$

By [12] lemma 2.1 we have $E(K_{\infty})[p^{\infty}] = \{0\}$ and so the map h is an isomorphism. Therefore from the above exact sequence we get that s is an injection and that coker $s = \ker g \cap \operatorname{img} \psi$. Therefore to complete the proof of the lemma it will suffice to show that $\ker g$ is finite.

Let v be a prime of K that does not divide p and consider the map g_v : $H^1(K_v, E)[p^{\infty}] \to (\bigoplus_{w|v} H^1(K_{n,w}, E)[p^{\infty}])^{\Gamma}$ where the sum is taken over all primes w of K_n above v. It can be shown by Shapiro's lemma along with the inflation restriction sequence that ker $g_v = H^1(\Gamma_w, E)$ where Γ_w is the decomposition group of Γ at a prime w of K_n above v. It follows from [21] proposition I-3.8 that $H^1(\Gamma_w, E)$ is finite of order $c_v^{(p)} = p^{\operatorname{ord}_p(c_v)}$.

To complete the proof it will suffice to show that the restriction map

$$g_{\mathfrak{p}}: \frac{H^1(K_{\mathfrak{p}}, E[p^{\infty}])}{E(\mathbb{Q}_p) \otimes \mathbb{Q}_p/\mathbb{Z}_p} \to \left(\frac{H^1(K_{n,\mathfrak{p}}, E[p^{\infty}])}{E(\mathbb{Q}_p) \otimes \mathbb{Q}_p/\mathbb{Z}_p}\right)^{\Gamma}$$

is injective where \mathfrak{p} is a prime of K_n above p

To prove this, consider the following commutative diagram

$$0 \longrightarrow (E(\mathbb{Q}_p) \otimes \mathbb{Q}_p/\mathbb{Z}_p)^{\Gamma} \longrightarrow H^1(K_{n,\mathfrak{p}}, E[p^{\infty}])^{\Gamma} \longrightarrow \left(\frac{H^1(K_{n,\mathfrak{p}}, E[p^{\infty}])}{E(\mathbb{Q}_p) \otimes \mathbb{Q}_p/\mathbb{Z}_p}\right)^{\Gamma}$$

$$\downarrow^{g'_{\mathfrak{p}}} \qquad \qquad \downarrow^{g'_{\mathfrak{p}}} \qquad \qquad \downarrow^{g_{\mathfrak{p}}} \qquad \qquad \downarrow^{g_{\mathfrak{p}}} \qquad \qquad \downarrow^{g_{\mathfrak{p}}} \qquad 0 \longrightarrow E(\mathbb{Q}_p) \otimes \mathbb{Q}_p/\mathbb{Z}_p \longrightarrow H^1(K_{\mathfrak{p}}, E[p^{\infty}]) \longrightarrow \frac{H^1(K_{n,\mathfrak{p}}, E[p^{\infty}])}{E(\mathbb{Q}_p) \otimes \mathbb{Q}_p/\mathbb{Z}_p} \longrightarrow 0$$

$$(6)$$

Applying the snake lemma to the above diagram we see that to show $\ker g_{\mathfrak{p}} = 0$, we only need to show that $\ker g''_{\mathfrak{p}} = 0$ and $\operatorname{coker} g'_{\mathfrak{p}} = 0$. Now $g'_{\mathfrak{p}}$ is an isomorphism so coker $g'_{\mathfrak{p}} = 0$. As for $\ker g''_{\mathfrak{p}}$ we have $\ker g''_{\mathfrak{p}} = H^1(\operatorname{Gal}(K_{n,\mathfrak{p}}/K_{\mathfrak{p}}), E(K_{n,\mathfrak{p}})[p^{\infty}])$. By [12] lemma 2.1 $E(K_{n,\mathfrak{p}})[p^{\infty}]^{\Gamma} = E(K_{\mathfrak{p}})[p^{\infty}] = \{0\}$ so $E(K_{n,\mathfrak{p}})[p^{\infty}] = \{0\}$. This shows that $\ker g_{\mathfrak{p}}''=0$ which completes the proof.

We now prove theorem A

Theorem A. Assume that $p \geq 5$, all primes dividing pN split in K/\mathbb{Q} and both primes of K above p are totally ramified in K_{∞}/K . The following are equivalent

- (a) $\operatorname{Sel}_{p^{\infty}}(E/K_{\infty})^{\operatorname{dual}}$ has Λ -rank two (b) Both $\operatorname{Sel}_{p^{\infty}}^{\pm}(E/K_{\infty})^{\operatorname{dual}}$ have Λ -rank one
- (c) $\operatorname{corank}_{\mathbb{Z}_n}(\operatorname{Sel}_{p^{\infty}}(E/K_n)) = p^n + O(1)$ and $\operatorname{rank}_{\mathbb{Z}_n}(\operatorname{img}\rho_{n,p}) = p^n + O(1)$
- (d) $H^2(G_S(K_\infty), E[p^\infty]) = 0$ (e) $R_{p^\infty}(E/K_\infty)^{\text{dual}}$ is Λ -torsion

Proof. We have that (d) and (e) are equivalent by [19] theorem 2.2.

We now show that (a) and (d) are equivalent. Let v be a prime of K above pand w a prime of K_{∞} above v. Since v ramifies in K_{∞}/K , therefore the extension $K_{\infty,w}/K_v$ is deeply ramified in the sense of [5]. So as explained in [9] pg. 70 we have $H^1(K_{\infty,w}, E)[p^{\infty}] = 0$. Combining this with [10] prop. 2, it follows that $\prod_{v \in S_{\infty}} H^1(K_{\infty,v}, E)[p^{\infty}]$ is Λ -cotorsion.

From the definition of $\operatorname{Sel}_{p^{\infty}}(E/K_{\infty})$ it follows that $\operatorname{corank}_{\Lambda}(\operatorname{Sel}_{p^{\infty}}(E/K_{\infty})) = \operatorname{corank}_{\Lambda}(H^{1}(G_{S}(K_{\infty}), E[p^{\infty}])$. Also Greenberg [10] prop 3 and 4 has shown that $\operatorname{corank}_{\Lambda}(H^{1}(G_{S}(K_{\infty}), E[p^{\infty}])) + \operatorname{corank}_{\Lambda}(H^{2}(G_{S}(K_{\infty}), E[p^{\infty}]) = 2$ and that $H^{2}(G_{S}(K_{\infty}), E[p^{\infty}])$ is a cofree Λ -module. The equivalence of (a) and (d) follows.

Now we show that (a) implies (b). Assume that $\operatorname{corank}_{\Lambda}(\operatorname{Sel}_{p^{\infty}}(E/K_{\infty})) = 2$. Taking the direct limit (with respect to restriction) of the first exact sequence in proposition 2.2 we get an exact sequence

$$0 \to \operatorname{Sel}_{p^{\infty}}^{1}(E/K_{\infty}) \to \operatorname{Sel}_{p^{\infty}}^{+}(E/K_{\infty}) \oplus \operatorname{Sel}_{p^{\infty}}^{-}(E/K_{\infty}) \to \operatorname{Sel}_{p^{\infty}}(E/K_{\infty})$$
 (7)

We now show that $\operatorname{Sel}_{p^{\infty}}^{1}(E/K_{\infty})$ is Λ -cotorsion. Let $\tilde{S}_{\infty}:=S_{\infty}\setminus\{\mathfrak{p}_{\infty},\bar{\mathfrak{p}}_{\infty}\}$ where $\mathfrak{p}_{\infty},\bar{\mathfrak{p}}_{\infty}$ are the primes of K_{∞} above p.

Now define

$$\mathcal{L}(K_{\infty}) = \prod_{i=1,2} E(\mathbb{Q}_p) \otimes \mathbb{Q}_p / \mathbb{Z}_p \times \prod_{v \in \tilde{S}_{\infty}} E(K_{\infty,v}) \otimes \mathbb{Q}_p / \mathbb{Z}_p.$$

and consider the commutative diagram

$$0 \longrightarrow H^{1}(G_{S}(K_{\infty}), E[p^{\infty}]) \longrightarrow H^{1}(G_{S}(K_{\infty}), E[p^{\infty}]) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \mathcal{L}(K_{\infty}) \longrightarrow \prod_{v \in S_{\infty}} H^{1}(K_{\infty,v}, E[p^{\infty}]) \longrightarrow \prod_{v \in S_{\infty}} H^{1}(K_{\infty,v}, E[p^{\infty}]) / \mathcal{L}(K_{\infty}) \longrightarrow 0$$
(8)

Applying the snake lemma to this diagram we get an exact sequence

$$0 \longrightarrow R_{p^{\infty}}(E/K_{\infty}) \longrightarrow \operatorname{Sel}_{p^{\infty}}^{1}(E/K_{\infty}) \longrightarrow \mathcal{L}(K_{\infty})$$
(9)

For any $v \in \tilde{S}_{\infty}$ we have $E(K_{\infty,v}) \otimes \mathbb{Q}_p/\mathbb{Z}_p = 0$ this is because for any n by Mattuck's theorem have $E(K_{n,v}) \cong \mathbb{Z}_l^r \times T$ where r is some integer, T is a finite group and $l \neq p$ is the rational prime below v. Therefore it follows that $\mathcal{L}(K_{\infty})$ is Λ -cotorsion. Also by the equivalence of (a) and (e) shown above we have that $R_{p^{\infty}}(E/K_{\infty})$ is Λ -cotorsion. The exact sequence (9) then shows that $\mathrm{Sel}_{p^{\infty}}^1(E/K_{\infty})$ is Λ -cotorsion.

Since $\operatorname{Sel}_{p^{\infty}}^{1}(E/K_{\infty})$ is Λ -cotorsion, therefore from the sequence (7) we get that $\operatorname{corank}_{\Lambda}(\operatorname{Sel}_{p^{\infty}}^{+}(E/K_{\infty}) \oplus \operatorname{Sel}_{p^{\infty}}^{-}(E/K_{\infty})) \leq 2$. We see that (b) will follow if we can show that $\operatorname{corank}_{\Lambda}(\operatorname{Sel}_{p^{\infty}}^{\pm}(E/K_{\infty})) \geq 1$. So we get (b) from [15] prop 4.7.

We now show that (b) implies (c). Assume that $\operatorname{corank}_{\Lambda}(\operatorname{Sel}_{p^{\infty}}^{\pm}(E/K_{\infty})) = 1$. First we show $\operatorname{corank}_{\mathbb{Z}_p}(\operatorname{Sel}_{p^{\infty}}(E/K_n)) = p^n + O(1)$. Since $\operatorname{corank}_{\Lambda}(\operatorname{Sel}_{p^{\infty}}^{\pm}(E/K_{\infty})) = 1$, therefore $\operatorname{corank}_{\mathbb{Z}_p}(\operatorname{Sel}_{p^{\infty}}^{\pm}(E/K_{\infty})^{\omega_n^{\pm}=0}) = \deg \omega_n^{\pm} + O(1)$. By [12] theorem 6.8 the natural map $\operatorname{Sel}_{p^{\infty}}^{\pm}(E/K_n)^{\omega_n^{\pm}=0} \to \operatorname{Sel}_{p^{\infty}}^{\pm}(E/K_{\infty})^{\omega_n^{\pm}=0}$ has finite kernel and cokernel. Therefore $\operatorname{corank}_{\mathbb{Z}_p}(\operatorname{Sel}_{p^{\infty}}^{\pm}(E/K_n)^{\omega_n^{\pm}=0}) = \deg \omega_n^{\pm} + O(1)$ Since $\deg \omega_n^{+} + \deg \omega_n^{-} = q_n + q_{n-1} = p^n + 1$, therefore we see by the second exact sequence in prop 2.2 that

in order to show $\operatorname{corank}_{\mathbb{Z}_p}(\operatorname{Sel}_{p^{\infty}}(E/K_n)) = p^n + O(1)$, it will suffice to show that $\operatorname{corank}_{\mathbb{Z}_p}(\operatorname{Sel}_{p^{\infty}}^1(E/K_n)^{\omega_n^{\pm}=0})$ is bounded with n.

Now X is a greatest common divisor of $\omega_n^+(X)$ and $\omega_n^-(X)$ in $\mathbb{Q}_p[X]$. It follows that there exist polynomials $A(X), B(X) \in \mathbb{Z}_p[X]$ such that $A(X)\omega_n^+(X) + B(X)\omega_n^-(X) = p^mX$ for some integer m. This shows that $\mathrm{Sel}_{p^\infty}^1(E/K_n)^{\omega_n^\pm=0} \subseteq \mathrm{Sel}_{p^\infty}^1(E/K_n)^{p^m(\gamma-1)=0}$ ($\mathrm{Sel}_{p^\infty}^1(E/K_n)^{p^m(\gamma-1)=0}$ means the subgroup of $\mathrm{Sel}_{p^\infty}^1(E/K_n)$ annihilated by $p^m(\gamma-1)$. Therefore it suffices to show that $\mathrm{corank}_{\mathbb{Z}_p}(\mathrm{Sel}_{p^\infty}^1(E/K_n)^{p^m(\gamma-1)=0})$ is bounded with n. As $p^m \, \mathrm{Sel}_{p^\infty}^1(E/K_n)^{p^m(\gamma-1)=0} \subseteq \mathrm{Sel}_{p^\infty}^1(E/K_n)^{\Gamma}$ and $\mathrm{Sel}_{p^\infty}^1(E/K_n)[p^m] \subseteq \mathrm{Sel}_{p^\infty}(E/K_n)[p^m]$ is finite, we only have to show that $\mathrm{corank}_{\mathbb{Z}_p}(\mathrm{Sel}_{p^\infty}^1(E/K_n)^{\Gamma})$ is bounded with n. This follows from lemma 2.4.

If \mathfrak{p} is a prime of K_{∞} above p, proposition 2.3 shows that $\operatorname{rank}_{\mathbb{Z}_p}(\operatorname{img} \rho_{n,\mathfrak{p}}) \geq p^n + O(1)$. It follows that $\operatorname{rank}_{\mathbb{Z}_p}(\operatorname{img} \rho_{n,p}) \geq p^n + O(1)$. Since $\operatorname{rank}_{\mathbb{Z}_p}(S_p(E/K_n)) \geq \operatorname{rank}_{\mathbb{Z}_p}(\operatorname{img} \rho_{n,p})$ we get equality. Hence we get (c).

Finally (c) implies (d) follows from [2] theorem 3.1. This completes the proof of theorem A. \Box

3. Proof of Theorem B

In this section we prove theorem B by a similar technique used in the proof of the ordinary case in [17]. We will prove theorem B for $\mathrm{Sel}_{p^{\infty}}^+(E/K_{\infty})$. The proof for $\mathrm{Sel}_{p^{\infty}}^-(E/K_{\infty})$ will be similar. We use all the notation and definitions from the introduction and the previous section. Throughout this section we assume the following

- (i) All the primes dividing pN split in K/\mathbb{Q}
- (ii) p does not divide $6h_K\varphi(Nd_K) \cdot \prod_{\ell \mid N} c_{\ell}$
- (iii) p does not divide the number of geometrically connected components of the kernel of $\pi_*: J_0(N) \to E$.

As we just mentioned, theorem B will be proven by adapting the proof of theorem A in [17]. The first important observation is that since E has good supersingular reduction at p, therefore E[p] is an irreducible $\operatorname{Gal}(\mathbb{Q}(E[p])/\mathbb{Q})$ -module (see [13] prop 4.4 or [24] prop 12(c)). In [17] we imposed the condition that $\operatorname{Gal}(\mathbb{Q}(E[p])/\mathbb{Q}) = GL_2(\mathbb{F}_p)$. In order to adapt the proof of theorem A in [17] to our setting we will need to show that $\operatorname{Gal}(\mathbb{Q}(E[p])/\mathbb{Q}) = GL_2(\mathbb{F}_p)$ may be replaced by the condition that E[p] is an irreducible $\operatorname{Gal}(\mathbb{Q}(E[p])/\mathbb{Q})$ -module in that paper. We now explain this. First we prove lemma 2.3 in [17]

Lemma 3.1. The extensions $\mathbb{Q}(E[p])/\mathbb{Q}$ and K_{∞}/\mathbb{Q} are linearly disjoint

Proof. $\mathbb{Q}(E[p])/\mathbb{Q}$ and K/\mathbb{Q} are linearly disjoint just as in the proof of lemma 2.3. We now show that K(E[p])/K and K_{∞}/K are disjoint. If they were not disjoint, then $G := \operatorname{Gal}(K(E[p])/K) = \operatorname{Gal}(\mathbb{Q}(E[p])/\mathbb{Q})$ would a normal subgroup N of index p and hence in particular the order of G would be divisible by p. This implies by Dickson's classification of subgroups of $GL_2(\mathbb{F}_p)$ ([8] sec 260) that $SL_2(\mathbb{F}_p) \subseteq G$ (the other possibility is that G is contained in a Borel subgroup. This is ruled out by the fact that E[p] is an irreducible $\operatorname{Gal}(\mathbb{Q}(E[p])/\mathbb{Q})$ -module). Then as in lemma 2.3, we must have that $N \cap SL_2(\mathbb{F}_p)$ has both order and index greater than 2. This contradicts that fact that $PSL_2(\mathbb{F}_p)$ is simple for $p \geq 5$.

In [17], we defined $L_n := K_n(E[p])$ and $\mathcal{G}_n := \operatorname{Gal}(L_n/K_n)$. We need to prove proposition 2.6 in [17]

Proposition 3.2. The restriction map induces an isomorphism:

res:
$$H^1(K_n, E[p]) \xrightarrow{\sim} H^1(L_n, E[p])^{\mathcal{G}_n} = \operatorname{Hom}_{\mathcal{G}_n}(\operatorname{Gal}(\overline{\mathbb{Q}}/L_n), E[p])$$

Proof. To prove this proposition we need to show that (*) $H^i(\mathcal{G}_n, E[p]) = 0$ for i = 1, 2. By the above lemma, we have $\mathcal{G}_n = \operatorname{Gal}(\mathbb{Q}(E[p])/\mathbb{Q})$. When $\operatorname{Gal}(\mathbb{Q}(E[p])/\mathbb{Q}) = GL_2(\mathbb{F}_p)$, we can use Serre's proof as in [11] prop. 9.1. In general, when E[p] is an irreducible $\mathbb{F}_p[G_{\mathbb{Q}}]$ -module we note that $\# \det(\mathcal{G}_n) = \#\chi_{p,\mathbb{Q}}(\mathcal{G}_n) > 2$ (since p > 3) where $\chi_{p,\mathbb{Q}}: G_{\mathbb{Q}} \to \mathbb{F}_p^{\times}$ is the mod p cyclotomic character. This implies by [20] prop 5.15 that \mathcal{G}_n contains a nontrivial homothety. Then one gets (*) either by adapting Serre's proof or by Sah's lemma (see [20] 5.5.2).

Proposition 9.3 in Gross's paper [11] was used in a number of places in [17] (see for example pg. 424). Gross proves this proposition under the assumption that $\operatorname{Gal}(\mathbb{Q}(E[p])/\mathbb{Q}) = GL_2(\mathbb{F}_p)$. Proposition 3.2 above shows that [11] prop. 9.3 holds under the weaker assumption that E[p] is an irreducible $\mathbb{F}_p[G_{\mathbb{Q}}]$ -module.

The above results show that we may indeed replace $Gal(\mathbb{Q}(E[p]), \mathbb{Q}) = GL_2(\mathbb{F}_p)$ in [17] by the condition (which holds here) that E[p] is an irreducible $Gal(\mathbb{Q}(E[p]))/\mathbb{Q})$ -module.

Now let A be a discrete Γ -module annihilated by p. For any $n \geq 1$ we have $\operatorname{Tr}_{2n/2n-1}(A^{\omega_{2n}^+=0}) \subseteq A^{\omega_{2n-2}^+=0}$. Using these maps we can form the inverse limit $\varprojlim A^{\omega_{2n}^+=0}$. We now have the following important proposition

Proposition 3.3. If M is a finitely generated $\bar{\Lambda}$ -module, then the module $M^+ := \underline{\lim} (M^{\text{dual}})^{\omega_{2n}^+=0}$ is a free $\bar{\Lambda}$ -module of same rank as M

Proof. As M is a finitely generated $\overline{\Lambda}$ -module and $\overline{\Lambda}$ is a PID, therefore M is isomorphic to $\overline{\Lambda}^r \times T$ for some $r \geq 0$ and some finite group T. From this we see that to prove the proposition, we only need to show that (i) $\varprojlim (T^{\text{dual}})^{\omega_{2n}^+=0}=0$ and that (ii) $\varprojlim (\overline{\Lambda}^{\text{dual}})^{\omega_{2n}^+=0}\cong \overline{\Lambda}$

First we show (i). Since T^{dual} is a finite discrete Γ -module, there exists $s \geq 0$ such that Γ_s acts trivially on T^{dual} . Then for all $n \geq s$, $\text{Tr}_{2n/2n-1}$ annihilates T^{dual} . It follows that $\lim_{s \to \infty} (T^{\text{dual}})^{\omega_{2n}^+ = 0} = 0$

We now show (ii). Since $\overline{\Lambda}/\omega_{2n}^+$ is a finite group, therefore we have an isomorphism $(\overline{\Lambda}/\omega_{2n}^+)^{\text{dual}} \cong \overline{\Lambda}/\omega_{2n}^+$. If we choose the isomorphisms appropriately, then we get a commutative diagram where π_n is the canonical projection

$$(\overline{\Lambda}/\omega_{2n}^{+})^{\mathrm{dual}} \xrightarrow{\sim} \overline{\Lambda}/\omega_{2n}^{+}$$

$$\downarrow^{\mathrm{Tr}_{2n/2n-1}} \qquad \downarrow^{\pi_{n}}$$

$$(\overline{\Lambda}/\omega_{2n-2}^{+})^{\mathrm{dual}} \xrightarrow{\sim} \overline{\Lambda}/\omega_{2n-2}^{+}$$

The above diagram shows that

$$\varprojlim(\overline{\Lambda}^{\mathrm{dual}})^{\omega_{2n}^+=0}\cong\varprojlim(\overline{\Lambda}/\omega_{2n}^+)^{\mathrm{dual}}\cong\varprojlim\overline{\Lambda}/\omega_{2n}^+\cong\overline{\Lambda}$$

This completes the proof.

Proposition 3.4. For any $n \geq 0$, the natural map $H^1(K_n, E[p]) \to H^1(K_n, E[p^{\infty}])$ induces an isomorphism $\operatorname{Sel}_p^+(E/K_n) \cong \operatorname{Sel}_{p^{\infty}}^+(E/K_n)[p]$

Proof. Let ψ_n : $\operatorname{Sel}_p(E/K_n) \to \operatorname{Sel}_{p^{\infty}}(E/K_n)[p]$ and $\psi_n^{'+}$: $\operatorname{Sel}_p^+(E/K_n) \to \operatorname{Sel}_{p^{\infty}}^+(E/K_n)[p]$ induced from the map $H^1(K_n, E[p]) \to H^1(K_n, E[p^{\infty}])$. By [12] lemma 2.1 $E(K_{\infty})[p^{\infty}] = \{0\}$. Therefore ψ_n is an isomorphism. From this an the snake lemma, we get that $\psi_n^{'+}$ is an injection and its cokernel is contained in the kernel of the map

$$\psi_{n,p}^{+}: \bigoplus_{\mathfrak{p}\mid p} \frac{H^{1}(K_{n,\mathfrak{p}}, E[p])}{E^{+}(K_{n,\mathfrak{p}})\otimes \mathbb{F}_{p}} \to \bigoplus_{\mathfrak{p}\mid p} \frac{H^{1}(K_{n,\mathfrak{p}}, E[p^{\infty}])}{E^{+}(K_{n,\mathfrak{p}})\otimes \mathbb{Q}_{p}/\mathbb{Z}_{p}}$$

We now show that $\psi_{n,p}^+$ is an injection. Let \mathfrak{p} be a prime of K_n above p. We need to show that the map

$$\psi_{n,\mathfrak{p}}^{+}: \frac{H^{1}(K_{n,\mathfrak{p}}, E[p])}{E^{+}(K_{n,\mathfrak{p}}) \otimes \mathbb{F}_{n}} \to \frac{H^{1}(K_{n,\mathfrak{p}}, E[p^{\infty}])}{E^{+}(K_{n,\mathfrak{p}}) \otimes \mathbb{Q}_{n}/\mathbb{Z}_{n}}$$

is an injection.

Consider the map

$$\psi_{n,\mathfrak{p}}: \frac{H^1(K_{n,\mathfrak{p}}, E[p])}{E(K_{n,\mathfrak{p}}) \otimes \mathbb{F}_p} \to \frac{H^1(K_{n,\mathfrak{p}}, E[p^{\infty}])}{E(K_{n,\mathfrak{p}}) \otimes \mathbb{Q}_p/\mathbb{Z}_p}$$

Since $H^1(K_{n,\mathfrak{p}}, E)[p] \cong H^1(K_{n,\mathfrak{p}}, E[p])/(E(K_{n,\mathfrak{p}}) \otimes \mathbb{F}_p)$, $H^1(K_{n,\mathfrak{p}}, E)[p^{\infty}] \cong H^1(K_{n,\mathfrak{p}}, E[p^{\infty}])/(E(K_{n,\mathfrak{p}}) \otimes \mathbb{Q}_p/\mathbb{Z}_p)$ and the inclusion map $H^1(K_{n,\mathfrak{p}}, E)[p] \to H^1(K_{n,\mathfrak{p}}, E)[p^{\infty}]$ is an injection, therefore $\psi_{n,\mathfrak{p}}$ is an injection. Now consider the following commutative diagram

$$\frac{E(K_{n,\mathfrak{p}})\otimes\mathbb{Q}_p/\mathbb{Z}_p}{E^+(K_{n,\mathfrak{p}})\otimes\mathbb{Q}_p/\mathbb{Z}_p} \longrightarrow \frac{H^1(K_{n,\mathfrak{p}},E[p^\infty])}{E^+(K_{n,\mathfrak{p}})\otimes\mathbb{Q}_p/\mathbb{Z}_p} \longrightarrow \frac{H^1(K_{n,\mathfrak{p}},E[p^\infty])}{E(K_{n,\mathfrak{p}})\otimes\mathbb{Q}_p/\mathbb{Z}_p}$$

$$\uparrow \psi'_{n,\mathfrak{p}} \qquad \qquad \uparrow \psi'_{n,\mathfrak{p}} \qquad \qquad \downarrow \frac{\psi'_{n,\mathfrak{p}}}{\psi'_{n,\mathfrak{p}}} \qquad \qquad \Rightarrow \frac{H^1(K_{n,\mathfrak{p}},E[p])}{E^+(K_{n,\mathfrak{p}})\otimes\mathbb{F}_p} \longrightarrow \frac{H^1(K_{n,\mathfrak{p}},E[p])}{E^+(K_{n,\mathfrak{p}})\otimes\mathbb{F}_p} \longrightarrow \frac{H^1(K_{n,\mathfrak{p}},E[p])}{E(K_{n,\mathfrak{p}})\otimes\mathbb{F}_p}$$

Since $\psi_{n,\mathfrak{p}}$ is an injection, the above commutative diagram shows that to prove that $\psi_{n,\mathfrak{p}}^+$ is an injection, we only need to show that $\psi_{n,\mathfrak{p}}^{'+}$ is an injection. We have $E(K_{n,\mathfrak{p}})\otimes \mathbb{Q}_p/\mathbb{Z}_p=\varinjlim E(K_{n,\mathfrak{p}})/p^m$ where the transition maps in the direct limit are induced by the multiplication-by-p map.

Suppose that $P + pE(K_{n,\mathfrak{p}}) \in E(K_{n,\mathfrak{p}})/p$ considered as an element of $\varinjlim E(K_{n,\mathfrak{p}})/p^m$ is contained in $\varinjlim E^+(K_{n,\mathfrak{p}})/p^m$. This implies that there exists $Q \in E^+(K_{n,\mathfrak{p}})$ and an $t \geq 1$ such that $p^tP-Q \in p^{t+1}E(K_{n,\mathfrak{p}})$ i.e. $p^tP-Q = p^{t+1}P'$ for some $P' \in E(K_{n,\mathfrak{p}})$. This gives $p^t(P-pP') = Q$. Let S = P - pP'. We want to show that $S \in E(K_{n,\mathfrak{p}})^+$. To this end, let m be an odd integer with $1 \leq m \leq n$. Since $Q \in E^+(K_{n,\mathfrak{p}})$ we have $p^t\operatorname{Tr}_{n/m}(S) = \operatorname{Tr}_{n/m}(Q) \in E(K_{m-1,\mathfrak{p}})$.

Now let $T = \operatorname{Tr}_{n/m}(S)$. We need to show that $T \in E(K_{m-1,\mathfrak{p}})$. Let σ be a generator of $\operatorname{Gal}(K_{m,\mathfrak{p}}/K_{m-1,\mathfrak{p}})$. Then we have $p^t(\sigma(T)-T)=\sigma(p^tT)-p^tT=0$ because $p^tT \in E(K_{m-1,\mathfrak{p}})$. But by [12] lemma 2.1 we have $E(K_{\infty,\mathfrak{p}})[p^{\infty}]^{\Gamma}=E(K_{\mathfrak{p}})[p^{\infty}]=\{0\}$ so $E(K_{\infty,\mathfrak{p}})[p^{\infty}]=\{0\}$. Therefore $\sigma(T)-T=0$ which implies that $T \in E(K_{m-1,\mathfrak{p}})$ as desired. This proves that $\psi_{n,\mathfrak{p}}^{'+}$ is an injection which as mentioned above proves that $\psi_{n,\mathfrak{p}}^{+}$ is also an injection. This completes the proof. \square

Theorem 3.5. For any $n \geq 0$, the natural map

$$\operatorname{Sel}_p^+(E/K_n)^{\omega_n^+=0} \to \operatorname{Sel}_p^+(E/K_\infty)^{\omega_n^+=0}$$

is an isomorphism.

Proof. For any $n \geq 0$, let $s_n : \operatorname{Sel}_{p^{\infty}}^+(E/K_n)^{\omega_n^+=0} \to \operatorname{Sel}_{p^{\infty}}^+(E/K_\infty)^{\omega_n^+=0}$ be the natural map induced by restriction. Note that we have assumed that p splits in K/\mathbb{Q} and that p does not divide the class number of K (which implies that K_∞/K is totally ramified at any prime of K above p). These two assumptions allow us to use the results of Iovita and Pollack [12].

By theorem 6.8 of [12] s_n is an injection with finite cokernel. The proof of this result is based on the proof of [14] theorem 9.3. The proof reveals that the cokernel of s_n will be trivial if for any prime v of K_n not dividing p the kernel of the restriction map $g_{n,v}: H^1(K_{n,v},E)[p^{\infty}] \to \bigoplus_{w|v} H^1(K_{\infty,w},E)[p^{\infty}]$ is trivial and this is the case since p was assumed not to divide $\prod_{v|N} c_v$ (see the remark following [9] lemma 3.3). Therefore s_n is an isomorphism. The result now follows from proposition 3.4.

Now for any n, we let $\operatorname{res}_n: H^1(K_n, E[p]) \to H^1(K_{n+1}, E[p])$ be the restriction map and $\operatorname{cor}_n: H^1(K_n, E[p]) \to H^1(K_{n-1}, E[p])$ be the corestriction map. Using the above theorem, we show

Proposition 3.6. For any $n \ge 1$ and any $s \in \operatorname{Sel}_p^+(E/K_{2n})^{\omega_{2n}^+=0}$, there exists $s' \in \operatorname{Sel}_p^+(E/K_{2n-2})^{\omega_{2n-2}^+=0}$ such that $\operatorname{cor}_{2n}(s) = \operatorname{res}_{2n-2}(s')$

Proof. Consider the following diagram

$$\operatorname{Sel}_{p}^{+}(E/K_{2n})^{\omega_{2n}^{+}=0} \xrightarrow{\sim} \operatorname{Sel}_{p}^{+}(E/K_{\infty})^{\omega_{2n}^{+}=0}$$

$$\downarrow^{\operatorname{cor}_{2n}} \qquad \qquad \downarrow^{\operatorname{Tr}_{2n/2n-1}}$$

$$\operatorname{Sel}_{p}^{+}(E/K_{2n-1}) \xrightarrow{\sim} \operatorname{Sel}_{p}^{+}(E/K_{\infty})$$

$$\uparrow^{\operatorname{res}_{2n-2}} \qquad \qquad \uparrow^{\iota_{2n-2}}$$

$$\operatorname{Sel}_{p}^{+}(E/K_{2n-2})^{\omega_{2n-2}^{+}=0} \xrightarrow{\sim} \operatorname{Sel}_{p}^{+}(E/K_{\infty})^{\omega_{2n-2}^{+}=0}$$

In the diagram above the horizontal maps are restriction and the map ι_{2n-2} is just the inclusion map. By theorem 3.5 the top and bottom horizontal maps are isomorphisms. This diagram commutes.

For any $t \in \operatorname{Sel}_p^+(E/K_\infty)^{\omega_{2n}^+=0}$ there exists $t' \in \operatorname{Sel}_p^+(E/K_\infty)^{\omega_{2n-2}^+=0}$ such that $\operatorname{Tr}_{2n/2n-2}(t) = \iota_{2n-2}(t')$. Also by [12] lemma 2.1 $E(K_\infty)[p^\infty] = 0$ so the middle horizontal map is an injection. The proposition follows easily from these two facts using a diagram chase.

For any $n \geq 1$, consider the restriction map $\operatorname{res}_{2n-2} : \operatorname{Sel}_p^+(E/K_{2n-2})^{\omega_{2n-2}^+=0} \to \operatorname{Sel}_p^+(E/K_{2n-1})$. By [12] lemma 2.1, $E(K_\infty)[p^\infty] = 0$ so $\operatorname{res}_{2n-2}$ is injective. The above proposition shows that $\operatorname{cor}_{2n}(\operatorname{Sel}_p^+(E/K_{2n})^{\omega_{2n}^+=0}) \subseteq \operatorname{img} \operatorname{res}_{2n-2}$ and so if we consider $\operatorname{res}_{2n-2}$ to be an isomorphism onto it's image, therefore we see that $\operatorname{res}_{2n-2}^{-1} \circ \operatorname{cor}_{2n}$ defines a map from $\operatorname{Sel}_p^+(E/K_{2n})^{\omega_{2n}^+=0}$ to $\operatorname{Sel}_p^+(E/K_{2n-2})^{\omega_{2n-2}^+=0}$. Using these maps, we construct the inverse limit. We now define $X_p^+(E/K_\infty) :=$

 $\varprojlim \operatorname{Sel}_p^+(E/K_{2n})^{\omega_{2n}^+=0}$. Note that we have chosen to put an "†" in the superscript so that the reader does not confuse this group with the group $X_p(E/K_\infty)$ in [17] and the groups $X_{s,p}(E/K_\infty)$ and $X_{f,p}(E/K_\infty)$ in [18] which were defined in a different way.

We now have the following key theorem

Theorem 3.7. The group $X_p^{\dagger}(E/K_{\infty})$ is a finitely generated $\bar{\Lambda}$ -module with $\operatorname{rank}_{\bar{\Lambda}}(X_p^{\dagger}(E/K_{\infty})) = \operatorname{rank}_{\bar{\Lambda}}(\operatorname{Sel}_p^{\dagger}(E/K_{\infty})^{\operatorname{dual}})$

Proof. By [16] th. 4.5, we know that $\operatorname{Sel}_{p^{\infty}}(E/K_{\infty})^{\operatorname{dual}}$ is a finitely generated Λ-module. Since $E(K_{\infty})[p^{\infty}] = 0$ by [12] lemma 2.1, therefore we have an isomorphism $\operatorname{Sel}_p(E/K_{\infty}) \xrightarrow{\sim} \operatorname{Sel}_{p^{\infty}}(E/K_{\infty})[p]$ and so $\operatorname{Sel}_p(E/K_{\infty})^{\operatorname{dual}}$ is a finitely generated $\overline{\Lambda}$ -module. Then same is true for $\operatorname{Sel}_p^+(E/K_{\infty})^{\operatorname{dual}}$ since $\operatorname{Sel}_p^+(E/K_{\infty}) \subseteq \operatorname{Sel}_p(E/K_{\infty})$.

Now consider the group $Y_p^{\dagger}(E/K_{\infty}):=\varprojlim \operatorname{Sel}_p^+(E/K_{\infty})^{\omega_{2n}^+=0}$ defined as in the paragraph proceeding proposition 3.3. Proposition 3.3 shows that $Y_p^{\dagger}(E/K_{\infty})$ is a finitely generated free $\overline{\Lambda}$ -module with $\operatorname{rank}_{\overline{\Lambda}}(Y_p^{\dagger}(E/K_{\infty}))=\operatorname{rank}_{\overline{\Lambda}}(\operatorname{Sel}_p^+(E/K_{\infty})^{\operatorname{dual}})$. Therefore to complete the proof, we only have to show that $X_p^{\dagger}(E/K_{\infty})$ and $Y_p^{\dagger}(E/K_{\infty})$ are isomorphic.

Let $n \geq 1$. The transition map from $\operatorname{Sel}_p^+(E/K_\infty)^{\omega_{2n}^+=0}$ to $\operatorname{Sel}_p^+(E/K_\infty)^{\omega_{2n-2}^+=0}$ in $Y_p^\dagger(E/K_\infty)$ is $\operatorname{Tr}_{2n/2n-1}$. Let $\iota_{2n-2}:\operatorname{Sel}_p^+(E/K_\infty)^{\omega_{2n-2}^+=0}\hookrightarrow\operatorname{Sel}_p^+(E/K_\infty)$ be the inclusion map. One sees that $\operatorname{Tr}_{2n/2n-1}(\operatorname{Sel}_p^+(E/K_\infty)^{\omega_{2n}^+=0})\subseteq \operatorname{img}\iota_{2n-2}$ and so by considering ι_{2n-2} to be an isomorphism onto it's image, we may write the transition maps defining the inverse limit $Y_p^\dagger(E/K_\infty)$ as $\iota_{2n-2}^{-1}\circ\operatorname{Tr}_{2n/2n-1}$. This shows that the restriction maps induce a map $\Xi:X_p^\dagger(E/K_\infty)\to Y_p^\dagger(E/K_\infty)$ and it follows from theorem 3.5 that this map is an isomorphism. This completes the proof.

As in [17], we call a rational prime ℓ is called a *Kolyvagin prime* if ℓ is relatively prime to Nd and $\operatorname{Frob}_{\ell}(K(E[p])/\mathbb{Q}) = [\tau]$ where τ is a fixed complex conjugation on $\overline{\mathbb{Q}}$ (the algebraic closure of \mathbb{Q}).

If ℓ is a rational prime and F is a number field we define

$$E(F_{\ell})/p := \bigoplus_{\lambda|\ell} E(F_{\lambda})/p$$

$$H^{1}(F_{\ell}, E[p]) := \bigoplus_{\lambda|\ell} H^{1}(F_{\lambda}, E[p])$$

$$H^{1}(F_{\ell}, E)[p] := \bigoplus_{\lambda|\ell} H^{1}(F_{\lambda}, E)[p]$$

where the sum is taken over all primes of F dividing ℓ . With this notation we let $\operatorname{res}_{\ell}$ be the localization map:

$$\operatorname{res}_{\ell} : E(F)/p \to E(F_{\ell})/p$$

$$\operatorname{res}_{\ell} : H^{1}(F, E[p]) \to H^{1}(F_{\ell}, E[p])$$

$$\operatorname{res}_{\ell} : H^{1}(F, E)[p] \to H^{1}(F_{\ell}, E)[p]$$

Now let ℓ be a Kolyvagin prime. For any n, local Tate duality gives a non-degenerate pairing (see [11] prop. 7.5)

$$\langle , \rangle_{\ell}' : E(K_{2n,\ell})/p \times H^1(K_{2n,\ell}, E)[p] \to \mathbb{F}_p$$
 (10)

This induces a non-degenerate pairing

$$\langle \; , \; \rangle_{\ell}' : (E(K_{2n,\ell})/p)/\omega_{2n}^+ \times H^1(K_{2n,\ell}, E)[p]^{\omega_{2n}^+ = 0} \to \mathbb{F}_p$$
 (11)

Now as ℓ is inert in K/\mathbb{Q} and $\ell \neq p$, it follows that ℓ splits completely in the anticyclotomic \mathbb{Z}_p -extension K_{∞}/K . We have $E(K_{n,\ell})/p = \bigoplus_{\lambda_n \mid \ell} E(K_{n,\lambda_n})/p$. For any $\lambda_n \mid \ell$ we have by Mattuck's theorem that $E(K_{n,\lambda_n}) \cong \mathbb{Z}_{\ell}^2 \times T$ where T is a finite group. This together with the fact that ℓ splits in K(E[p])/K implies that $E(K_{n,\lambda_n})/p = \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$. Thus we have an isomorphism

$$E(K_{n,\ell})/p \cong R_n \times R_n \tag{12}$$

The above isomorphism shows that multiplication by $\tilde{\omega}_{2n}^-$ induces an isomorphism $\theta: (E(K_{2n,\ell})/p)/\omega_{2n}^+ \stackrel{\sim}{\to} \tilde{\omega}_{2n}^- E(K_{2n,\ell})/p = (E(K_{2n,\ell})/p)^{\omega_{2n}^+=0}$. Thus we have a non-degenerate pairing

$$\langle , \rangle_{\ell} : (E(K_{2n,\ell})/p)^{\omega_{2n}^{+}=0} \times H^{1}(K_{2n,\ell}, E)[p]^{\omega_{2n}^{+}=0} \to \mathbb{F}_{p}$$
 (13)

defined by the relation $\langle a, b \rangle'_{\ell} = \langle \theta(a), b \rangle_{\ell}$.

Now let $\operatorname{res}_n: H^1(K_{n,\ell}, E[p]) \to H^1(K_{n+1,\ell}, E[p])$ and $\operatorname{cor}_n: H^1(K_{n,\ell}, E[p]) \to H^1(K_{n-1,\ell}, E[p])$ be the restriction and corestriction maps, respectively. We will also let res_n and cor_n denote these maps on $E(K_{n,\ell})/p$ and $H^1(K_{n,\ell}, E)[p]$. Noting that $\tilde{\omega}_m^+ = \tilde{\omega}_{m-1}^+$ and $\omega_m^+ = \omega_{m-1}^+$ when m is odd and $\tilde{\omega}_m^- = \tilde{\omega}_{m-1}^-$ and $\omega_m^- = \omega_{m-1}^-$ when m is even, we get a commutative diagram

$$(E(K_{2n,\ell})/p)/\omega_{2n}^{+} \xrightarrow{\times \tilde{\omega}_{2n}^{-}} (E(K_{2n,\ell})/p)^{\omega_{2n}^{+}=0}$$

$$\downarrow^{\operatorname{cor}_{2n}} \qquad \qquad \downarrow^{\operatorname{cor}_{2n}}$$

$$(E(K_{2n-1,\ell})/p)/\omega_{2n-2}^{+} \xrightarrow{\times \tilde{\omega}_{2n-1}^{-}} (E(K_{2n-1,\ell})/p)^{\omega_{2n-2}^{+}=0}$$

$$\downarrow^{\operatorname{res}_{2n-2}^{-}}$$

$$(E(K_{2n-2,\ell})/p)/\omega_{2n-2}^{+} \xrightarrow{\times \tilde{\omega}_{2n-2}^{-}} (E(K_{2n-2,\ell})/p)^{\omega_{2n-2}^{+}=0}$$

Let $\varinjlim H^1(K_{2n,\ell},E)[p]^{\omega_{2n}^+=0}$ be the direct limit with transition maps being restriction and $\varprojlim (E(K_{2n,\ell})/p)^{\omega_{2n}^+=0}$ be the inverse limit with transition maps $\operatorname{res}_{2n-2}^{-1} \circ \operatorname{cor}_{2n} : (E(K_{2n,\ell})/p)^{\omega_{2n}^+=0} \to (E(K_{2n-2,\ell})/p)^{\omega_{2n-2}^+=0}$.

A property of Tate local duality gives that $\langle \operatorname{res}_n(a), b \rangle'_{\ell} = \langle a, \operatorname{cor}_{n+1}(b) \rangle'_{\ell}$. Taking this and the above commutative diagram into account, we see that the pairing $\langle \ , \ \rangle_{\ell}$ induces an isomorphism

$$\underset{\longrightarrow}{\underline{\lim}} H^1(K_{2n,\ell}, E)[p]^{\omega_{2n}^+ = 0} \cong (\underset{\longleftarrow}{\underline{\lim}} (E(K_{2n,\ell})/p)^{\omega_{2n}^+ = 0})^{\text{dual}}$$
(15)

Let $n \geq 0$ be an integer and ℓ a Kolyvagin prime. By the definition of $\operatorname{Sel}_p^+(E/K_{2n})$, we have $\operatorname{res}_\ell(\operatorname{Sel}_p^+(E/K_{2n})) \subseteq E(K_{2n,\ell})/p$ and so $\operatorname{res}_\ell(\operatorname{Sel}_p^+(E/K_{2n})^{\omega_{2n}^+=0}) \subseteq (E(K_{2n,\ell})/p)^{\omega_{2n}^+=0}$.

The definitions of $X_p^{\dagger}(E/K_{\infty})$ and $\varprojlim (E(K_{2n,\ell})/p)^{\omega_{2n}^+=0}$ show that the transition maps of these groups are compatible with the maps $\operatorname{res}_{\ell}$ and therefore the maps $\operatorname{res}_{\ell}$ induce a map

$$\operatorname{res}_{\ell}: X_p^{\dagger}(E/K_{\infty}) \to \underline{\varprojlim}(E(K_{2n,\ell})/p)^{\omega_{2n}^{+}=0}$$
(16)

Dualizing this map and using the isomorphism (15) above we get a map

$$\psi_{\ell}: \underline{\varinjlim} H^{1}(K_{2n,\ell}, E)[p]^{\omega_{2n}^{+}=0} \to X_{p}^{\dagger}(E/K_{\infty})^{\text{dual}}$$

We now follow the proof of the ordinary case in [17] carefully making the necessary adjustments to suit our setting. First we prove the analog of [17] prop. 2.5. We remark that there is a mistake in the proof of [17]: In the last line of the proof the \mathbb{F}_p -dimension should be 2+c rather that 2p+c.

Proposition 3.8. If ℓ is a Kolyvagin prime, then $\varinjlim H^1(K_{2n,\ell},E)[p]^{\omega_{2n}^+=0}$ is a cofree $\overline{\Lambda}$ -module of rank two

Proof. Let $Z:=\varinjlim H^1(K_{2n,\ell},E)[p]^{\omega_{2n}^+=0}$. As in the proof of [17] prop. 2.5, we have $Z^{\omega_{2n}^+=0}=H^1(K_{2n,\ell},E)[p]^{\omega_{2n}^+=0}$ and for any $\lambda_{2n}|\ell$ we have $H^1(K_{2n,\lambda_{2n}},E)[p]=\mathbb{Z}/p\mathbb{Z}\times\mathbb{Z}/p\mathbb{Z}$. Therefore it follows that $H^1(K_{2n,\ell},E[p])\cong R_{2n}\times R_{2n}$. Just as we observed after (12), we have $R_{2n}^{\omega_{2n}^+=0}\cong R_{2n}/\omega_{2n}^+$. Summing up, we get $Z^{\omega_{2n}^+=0}\cong R_{2n}/\omega_{2n}^+\times R_{2n}/\omega_{2n}^+\times \overline{\Lambda}/\omega_{2n}^+$. The proposition follows from this. \square

Let g be a topological generator of Γ . Since $X^{p^{n-1}(p-1)}\Phi_n(X^{-1}) = \Phi_n(X)$ and $\tau g \tau = g^{-1}$, therefore it easily follows from this and the fact that τ acts on $\mathrm{Sel}_p^+(E/K_{2n})$ that τ acts on $\mathrm{Sel}_p^+(E/K_{2n})^{\omega_{2n}^+=0}$ and hence also on $X_p^{\dagger}(E/K_{\infty})$.

We define the sets and define the sets, U, V and $\mathcal{L}(U)$ in the same way as in section 2 of [17]. Then as in [17] prop. 2.8 we get

Proposition 3.9. If U^+ generates V^+ , then $\operatorname{img} \psi_{\ell}$ with ℓ ranging over $\mathscr{L}(U)$ generate $X_p^{\dagger}(E/K_{\infty})^{\operatorname{dual}}$

Also, using our modified pairing \langle , \rangle_{ℓ} we get as in [17] prop. 2.9 that

Proposition 3.10. For any n, if $s \in \operatorname{Sel}_p(E/K_{2n})^{\omega_{2n}^+=0}$ and $\gamma \in H^1(K_n, E)[p]^{\omega_{2n}^+=0}$, then

$$\sum_{\ell} \langle \operatorname{res}_{\ell} s, \operatorname{res}_{\ell} \gamma \rangle_{\ell} = 0$$

where the sum is taken over all the rational primes

Let r be a squrefree product of Kolyvagin primes. We define Kolyvagin classes $c_n(r) \in H^1(K_n, E[p])$ and $d_n(r) \in H^1(K_n, E)[p]$ as in section 2.2 of [17]. We need

Proposition 3.11. Let $n \ge 0$ and r a squarefree product of Kolyvagin prime. Let $\operatorname{res}_n : H^1(K_n, E[p]) \to H^1(K_{n+1}, E[p])$ be the restriction map. Then we have

(a)
$$\operatorname{Tr}_{1/0}(c_1(r)) = \operatorname{res}_0(\frac{p-1}{2}c_0(r))$$

 $\operatorname{Tr}_{n+1/n}(c_{n+1}(r)) = -\operatorname{res}_{n-1}(c_{n-1}(r))$ for $n \ge 1$

(b)
$$\omega_{2n}^+ c_{2n}(r) = 0$$

(c) $\omega_{2n+1}^+ c_{2n+1}(r) = 0$

Proof. If K[r] is the ring class field of K of conductor r, we defined in [17] section 2.2 $K_n[r]$ to be $K_nK[r]$ and defined a Heegner point $\alpha_n(r) \in K_n(r)$. From section 3 of [23] one sees that the points $\alpha_n(r)$ satisfy identical norm relations to (3) and (4) which were shown for the points α_n . Therefore (a) follows from the definition of $c_n(r)$ and diagram (3) in [17] section 2.2. (b) and (c) follow from (a) as in lemma 2.1.

Let $R_n \alpha_n$ denote the R_n -submodule of $H^1(K_n, E[p])$ generated by the image of α_n under the Kummer map

$$E(K_n) \to H^1(K_n, E[p]).$$

By [12] lemma 2.1 we have $E(K_{\infty})[p^{\infty}] = \{0\}$. This implies that the restriction map for $m \geq n$

$$H^{1}(K_{n}, E[p]) \to H^{1}(K_{m}, E[p])$$

is injective and therefore allows us to view $R_n\alpha_n$ as a submodule of $H^1(K_m, E[p])$. The norm relation (4) in section 2 shows that $R_{2n}\alpha_{2n} \subseteq R_{2n+2}\alpha_{2n+2}$ and so we may form the direct limit $\lim_{n \to \infty} R_{2n}\alpha_{2n}$. From [17] theorem 4.1 we get

Theorem 3.12. The $\overline{\Lambda}$ -module $(\varinjlim R_{2n}\alpha_{2n})^{\text{dual}}$ is finitely generated and not torsion

Then as in [17] section 3, the above theorem implies that there exists a nonzero map

$$\phi: \overline{\Lambda}^{\text{dual}} \to \varinjlim R_n \alpha_n$$

and one chooses an auxiliary prime ℓ_1 and this map to show

Proposition 3.13. As a $\overline{\Lambda}$ -module $(\varinjlim R_{2n}c_{2n}(\ell_1))^{\text{dual}}$ is finitely generated and not torsion

Note that $R_{2n}c_{2n}(\ell_1) \subseteq R_{2n+2}c_{2n+2}(\ell_1)$ by proposition 3.11. As in [17] section 3, one chooses $s \in \varinjlim R_{2n}\alpha_{2n}$ and $s' \in \varinjlim R_{2n}c_{2n}(\ell_1)$ and proves as in [17] prop. 3.3 that s and s' viewed as elements of $H^1(K_{\infty}, E[p])$ are linearly independent over \mathbb{F}_p . Then one defines the set $S_{n_0} \subset H^1(K_{n_0}, E[p])$ and the set U in the same way as in [17]. If $\ell \neq \ell_1$ is a Kolyvagin prime, then it follows from lemma 2.1 and proposition 3.11 that $\operatorname{res}_{\ell}(R_{2n}\alpha_{2n}) \subseteq (E(K_{2n,\ell})/p)^{\omega_{2n}^+=0}$ and $\operatorname{res}_{\ell}(R_{2n}c_{2n}(\ell_1)) \subseteq (E(K_{2n,\ell})/p)^{\omega_{2n}^+=0}$. Then by the same proof of [17] prop. 3.4, we get

Proposition 3.14. For any $\ell \in \mathscr{L}(U)$ the submodules $\varinjlim_{n \to \infty} \operatorname{res}_{\ell} R_{2n} \alpha_{2n}$ and $\varinjlim_{n \to \infty} \operatorname{res}_{\ell} R_{2n} c_{2n}(\ell_1)$ of $\varinjlim_{n \to \infty} (E(K_{2n,\ell})/p)^{\omega_{2n}=0}$ each have $\overline{\Lambda}$ -corank greater or equal to one and together they generate a submodule of $\overline{\Lambda}$ -corank equal to two

Using property (3) of the Kolyvagin classes in section 2.2 of [17], the same proof of [17] corollary 3.5 gives

Corollary 3.15. For any $\ell \in \mathscr{L}(U)$ the submodules $\varinjlim \operatorname{res}_{\ell} R_{2n} d_{2n}(\ell)$ and $\varinjlim \operatorname{res}_{\ell} R_{2n} d_{2n}(\ell \ell_1)$ of $\varinjlim H^1(K_{2n,\ell}, E)[p]^{\omega_{2n}^+=0}$ each have $\overline{\Lambda}$ -corank greater or equal to one and together they generate $\varinjlim H^1(K_{2n,\ell}, E)[p]^{\omega_{2n}^+=0}$

Using proposition 3.10 together with property (2) of the Kolyvagin classes in section 2.2 of [17], one proves the analog of [17] prop. 3.6 by the same way

Proposition 3.16. For any $\ell \in \mathcal{L}(U)$, $\operatorname{img} \psi_{\ell}$ is a cofree $\overline{\Lambda}$ -module and $\operatorname{img} \psi_{\ell} = \psi_{\ell}(\lim \operatorname{res}_{\ell} R_{2n} d_{2n}(\ell \ell_1))$

Then in an identical way to [17] prop. 3.7, one proves

Proposition 3.17. We have $\operatorname{rank}_{\Lambda}(X_{\mathfrak{p}}^{\dagger}(E/K_{\infty})) \leq 1$

We can now finally prove theorem B

Theorem B. Assume the following

- (i) All the primes dividing pN split in K/\mathbb{Q}
- (ii) p does not divide $6h_K\varphi(Nd_K) \cdot \prod_{\ell \mid N} c_{\ell}$
- (iii) p does not divide the number of geometrically connected components of the kernel of $\pi_*: J_0(N) \to E$.

Then both $\operatorname{Sel}_{p^{\infty}}^{\pm}(E/K_{\infty})^{\operatorname{dual}}$ have Λ -rank one and μ -invariant zero

Proof. By proposition 3.4 it follows that $\operatorname{Sel}_{p^{\infty}}^+(E/K_{\infty})[p] \cong \operatorname{Sel}_p^+(E/K_{\infty})$. Therefore if $X := \operatorname{Sel}_{p^{\infty}}^+(E/K_{\infty})^{\operatorname{dual}}$, then $X/p \cong \operatorname{Sel}_p^+(E/K_{\infty})^{\operatorname{dual}}$. We see from this that to prove the theorem we only have to show that (i) $\operatorname{rank}_{\Lambda}(\operatorname{Sel}_{p^{\infty}}^+(E/K_{\infty})^{\operatorname{dual}}) \geq 1$ and that (ii) $\operatorname{rank}_{\overline{\Lambda}}(\operatorname{Sel}_p^+(E/K_{\infty})^{\operatorname{dual}}) \leq 1$. (i) follows from [15] prop. 4.7 and (ii) follows from the previous proposition together with theorem 3.7. This proves theorem B for $\operatorname{Sel}_{p^{\infty}}^+(E/K_{\infty})$. The proof for $\operatorname{Sel}_{p^{\infty}}^-(E/K_{\infty})$ is similar.

References

- [1] M. Bertolini, Selmer groups and Heegner points in anticyclotomic \mathbb{Z}_p -extensions, Compositio Math. 99 (1995), 153-182
- [2] M. Bertolini Iwasawa theory for elliptic curves over imaginary quadratic fields, Journal de théorie des nombres de Bordeaux 13(1) (2001), 1-25
- [3] C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over Q: Wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), 843-939.
- [4] M. Çiperiani, Tate-Shafarevich groups in anticyclotomic Z_p-extensions at supersingular primes, Compositio Math. 145 (2009), 293-308
- [5] J. Coates, R. Greenberg, Kummer Theory for Abelian Varieties over Local Fields, Invent. Math., 124 (1996), 129-174.
- [6] C. Cornut, Mazur's conjecture on higher Heegner points, Invent. Math. 148 (2002), 495-523
- [7] C. Cornut, V. Vatsal, CM points and quarternion algebras, Doc. Math 10 (2005), 263-309
- [8] L. Dickson, Linear groups: With an exposition of the Galois field theory, Dover, New York, 1958.
- [9] R. Greenberg, Iwasawa theory for elliptic curves. Lecture Notes in Math. 1716, Springer, New York 1999, pp.51-144.
- [10] R. Greenberg, Iwasawa theory for p-adic representations, in Algebraic number theory, 97-137, Adv. Stud. Pure Math., 17, Academic Press, Boston, MA, 1989.
- [11] B. Gross, Kolyvagin's work on modular elliptic curves, L-functions and arithmetic, 235-256, London Math. Soc. Lecture Series, 153, 1989.
- [12] A. Iovita, R. Pollack, Iwasawa theory of elliptic curves at supersingular primes over Z_p-extensions of number fields, J. Reine Angew. Math. 598 (2006), 71-103

- [13] B.D. Kim, The parity conjecture for elliptic curves at supersingular reduction primes, Compositio Math. 143 (2007) 47–72.
- [14] S. Kobayashi, Iwasawa theory for elliptic curves at supersingular primes, Invent. Math. 152 (2003), 1-36
- [15] M. Longo, S. Vigni, Plus/Minus Heegner points and Iwasawa theory of elliptic curves at supersingular primes, Bollettino dell'Unione Matematica Italiana, Vol 12, No. 3 (2019), 315-347
- [16] Y.I. Manin, Cyclotomic fields and modular curves. Russian Math. Surveys 26(6) 1971, 7-78.
- [17] A. Matar, Selmer groups and anticyclotomic Z_p-extensions, Math. Proc. Camb. Phil. Soc. 161(3) (2016), 409-433
- [18] A. Matar, Fine Selmer Groups, Heegner points and Anticyclotomic Z_p-extensions, International Journal of Number Theory, Vol 14, No. 5 (2018), 1279-1304.
- [19] A. Matar, On the Λ-cotorsion subgroup of the Selmer group, https://arxiv.org/abs/1812.00207 to appear in Asian Journal of Mathematics
- [20] A. Matar, J. Nekovář, Kolyvagin's result on the vanishing of $\coprod (E/K)[p^{\infty}]$ and its consequences for anticyclotmic Iwasawa theory, J. Théorie des Nombres de Bordeaux **31**(2) 2019, 455-501
- [21] J.S. Milne, Arithmetic Duality Theorems, second ed., BookSurge, LLC, Charleston, SC, 2006.
- [22] J. Nekovář, Selmer complexes, Astérisque 310 (2006), Soc. Math. de France, Paris.
- [23] B. Perrin-Riou, Fonctions L p-adiques, théorie d'Iwasawa et points de Heegner, Bull. Soc. Math. France 115 (1987), 399-456
- [24] J.-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331
- [25] J. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106, Springer-Verlag (1986)
- [26] A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. 141 (2) (1995), 443-551.