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Abstract. Let E/Q be an elliptic curve, p a prime and K∞/K the anticyc-

lotomic Zp-extension of a quadratic imaginary field K. In this paper we prove
two theorems. The first theorem shows that there is an intimate relationship

between the Λ-corank of Selp∞ (E/K∞), the Λ-coranks of Sel±p∞ (E/K∞) and

the vanishing of H2(GS(K∞), E[p∞]). The second theorem proves under suit-

able conditions that the Pontryagin dual of Sel±p∞ (E/K∞) has Λ-rank one and

µ-invariant zero.

1. Introduction

Let K be an imaginary quadratic field with discriminant dK 6= −3,−4 whose
class number we will denote by hK . Let p be an odd prime, K∞/K be the anti-
cyclotomic Zp-extension of K, Γ = Gal(K∞/K) and Kn the unique subfield of K∞
containing K such that Gal(Kn/K) ∼= Z/pnZ. Denote Γn = Γp

n

, Gn = Γ/Γn and
Rn = Fp[Gn].

Let Λ = Zp[[Γ]] be the Iwasawa algebra attached to K∞/K. Fixing a topological
generator γ ∈ Γ allows us to identify Λ with the power series ring Zp[[T ]]. Also

consider the “mod p” Iwasawa algebra Λ = Λ/pΛ = Fp[[T ]].
Now let E be an elliptic curve of conductor N defined over Q with a modular

parametrization π : X0(N)→ E. Throughout the paper we assume that E has good
supersingular reduction at p. Let S be a finite set of primes of K containing all the
primes dividing pN . We let KS be the maximal extension of K unramified outside
S. Suppose now that L is a field with K ⊆ L ⊆ KS . We let GS(L) = Gal(KS/L)
and SL be the set of primes of L above those in S. For simplicity, we will denote
SKn

by Sn and SK∞ by S∞.
We now define the Selmer groups we will work with. For any n and m we let

Selpm(E/Kn) denote the pm-Selmer group of E over Kn defined by

0 −→ Selpm(E/Kn) −→ H1(GS(Kn), E[pm]) −→
∏
v∈Sn

H1(Kn,v, E)[pm].

We also define the p∞-Selmer group of E over Kn as Selp∞(E/Kn) =
lim−→
m

Selpm(E/Kn).

Finally we define the pm-Selmer group and the p∞-Selmer group of E over K∞
as Selpm(E/K∞) = lim−→

n

Selpm(E/Kn) and Selp∞(E/K∞) = lim−→
n

Selp∞(E/Kn).

Let p be a prime of Kn above p. Following Kobayashi [14], we define the following
subgroups of E(Kn,p)

E+(Kn,p) := {x ∈ E(Kn,p) | Trn/m+1(x) ∈ E(Km,p) for even m : 0 ≤ m < n}
1
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E−(Kn,p) := {x ∈ E(Kn,p) | Trn/m+1(x) ∈ E(Km,p) for odd m : 0 ≤ m < n}.

Following Kobayashi [14] and Iovita-Pollack [12], we define

0 −→ Selp
±(E/Kn) −→ Selp(E/Kn) −→

∏
p|p

H1(Kn,p, E[p])

E±(Kn,p)⊗ Fp

and Selp
±(E/K∞) = lim−→

n

Selp
±(E/Kn)

Also we define

0 −→ Sel±p∞(E/Kn) −→ Selp∞(E/Kn) −→
∏
p|p

H1(Kn,p, E[p∞])

E±(Kn,p)⊗Qp/Zp

and Sel±p∞(E/K∞) = lim−→
n

Sel±p∞(E/Kn)

Finally, we need the definition of the fine p∞-Selmer group of E/K∞. This group
is defined as

0 −→ Rp∞(E/K∞) −→ H1(GS(K∞), E[p∞]) −→
∏
v∈S∞

H1(K∞,v, E[p∞])

Now for any n, let Sp(E/Kn) := lim←−
m

Selpm(E/Kn) (inverse limit with respect

to maps induced by multiplication by p). Let p be a prime of Kn above p. We
write E(Kn,p)p := lim←−

m

E(Kn,p)/pm for the p-adic completion of E(Kn,p) and define

E(Kn,p)p := ⊕p|pE(Kn,p)p. By the definition of the Selmer group, for any prime
p of Kn dividing p, there is a natural map ρn,p : Sp(E/Kn) → E(Kn,p)p. These
maps induce a map ρn,p : Sp(E/Kn) → E(Kn,p)p. By abuse of notation, if p is a
prime of K∞ above p, we have for any n a map ρn,p.

In what follows, if A is a Hausdorff, abelian locally-compact topological group
we denote its Pontryagin dual by Adual. Also, as is standard, we will denote a
pseudo-isomorphism from Λ-modules A to B by A ∼ B. Finally, for any rational
prime v we will let cv be the Tamagawa number of E at v.

Theorems A and B below rely on the results of Iovita-Pollack [12]. In order
to invoke their results we will need to assume that p splits in K/Q and that any
prime of K above p is totally ramified in K∞/K. For theorem B we will replace
this second condition by the slightly stronger condition that p does not divide the
class number of K. This condition that p - hK is used in [17] prop 3.3 and this
proposition is needed for the proof of theorem B.

Theorem A below shows that there is an intimate relationship between the
Λ-corank of Selp∞(E/K∞), the Λ-coranks of Sel±p∞(E/K∞) and the Λ-corank
of Rp∞(E/K∞). Another thing the theorem shows is that the growth formula

corankZp
(Selp∞(E/Kn)) = pn + O(1) follows from both Sel±p∞(E/K∞)dual having

Λ-rank one. This last statement was proven in [12] prop. 7.1 under the extra
condition that H2(GS(K∞), E[p∞]) = 0. We remove this condition.

Theorem A. Assume that p ≥ 5, all primes dividing pN split in K/Q and both
primes of K above p are totally ramified in K∞/K. The following are equivalent
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(a) Selp∞(E/K∞)dual has Λ-rank two

(b) Both Sel±p∞(E/K∞)dual have Λ-rank one
(c) corankZp

(Selp∞(E/Kn)) = pn +O(1) and rankZp
(img ρn,p) = pn +O(1)

(d) H2(GS(K∞), E[p∞]) = 0
(e) Rp∞(E/K∞)dual is Λ-torsion

Under some conditions Çiperiani [4] has shown that Selp∞(E/K∞)dual has Λ-

rank two and Longo-Vigni [15] have shown that both Sel±p∞(E/K∞)dual have Λ-rank
one. If we impose the extra condition in [4] that both primes ofK above p are totally
ramified in K∞/K, then the above theorem shows that in this case the results of
Çiperiani and Longo-Vigni are equivalent.

By adapting the proof of the ordinary case in [17] to the plus/minus Selmer
groups we will show

Theorem B. Assume the following

(i) All the primes dividing pN split in K/Q
(ii) p does not divide 6hKϕ(NdK) ·

∏
`|N cv

(iii) p does not divide the number of geometrically connected components of the
kernel of π∗ : J0(N)→ E.

Then both Sel±p∞(E/K∞)dual have Λ-rank one and µ-invariant zero

Under the conditions of theorem B, theorem B gives that both Sel±p∞(E/K∞)dual

have Λ-rank one and theorems A and B together imply that Selp∞(E/K∞)dual has
Λ-rank two. This gives a different proof to the results of Longo-Vigni [15] and
Çiperiani [4]. Both of these cited results are proven under slightly less restrictive
conditions. The advantage of imposing our extra conditions is that we also show
that both Sel±p∞(E/K∞)dual have µ-invariant zero. This result is analogous to

theorem 3.4 of [18] which shows that Selp∞(E/K∞)dual has µ-invariant zero in the
case where E has good ordinary reduction at p.

It is an interesting question whether both Sel±p∞(E/K∞)dual have µ-invariant

zero implies that Selp∞(E/K∞)dual has µ-invariant zero as well. As proposition 2.2

in the next section shows, we have a map j : Sel+p∞(E/K∞) ⊕ Sel−p∞(E/K∞) →
Selp∞(E/K∞). One can attempt to use this map to relate the µ-invariants, however
an understanding of the cokernel of the map j is needed. The author has not been
able to get a handle on the µ-invariant of the Pontryagin dual of coker j and hence
has been unable to deduce that Selp∞(E/K∞)dual has µ-invariant zero.

In relation to the vanishing of the µ-invariant of Selp∞(E/K∞), we would
like to mention the following: in [18] the author conjectured (conjecture
B) that Rp∞(E/K∞)dual is cofinitely generated over Zp. Assuming that
H2(GS(K∞), E[p∞]) = 0, it is interesting to note that this conjecture is equi-
valent to Selp∞(E/K∞)dual having µ-invariant zero. This equivalence follows from
the main theorem of [19] if one notes that E(K∞)[p∞] is finite. The finiteness of
E(K∞)[p∞] can be shown by taking a prime q - pN that is inert in K/Q. The
prime q of K above q splits completely in K∞/K. Let Q be some prime of K∞
above q. Since the residue field K∞,Q of K∞,Q is finite and E(K∞,Q)[p∞] injects
into E(K∞,Q)[p∞], the finiteness of E(K∞)[p∞] follows.

Remark. Let p be a prime of Kn above p and let Ê be the formal group of E/Q.

Then Ê(Kn,p) is isomorphic to E1(Kn,p) = ker(E(Kn,p) → Ē(Kp)) where Kp is
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the residue field of Kn,p. We then define Ê±(Kn,p) ∼= E1(Kn,p)∩E±(Kn,p). Since
E has supersingular reduction at p, therefore Ē(Kp)[p] = 0. It follows that we

have an isomorphism Ê±(Kn,p) ⊗ Qp/Zp ∼= E±(Kn,p) ⊗ Qp/Zp. The plus/minus

Selmer groups defined in [12] are defined as Sel±p∞(E/Kn) but with E±(Kn,p) ⊗
Qp/Zp replaced with Ê±(Kn,p) ⊗ Qp/Zp. By what we just explained, it follows

that Sel±p∞(E/Kn) is identical to the Selmer group defined in [12].

2. Proof of Theorem A

In this section we prove theorem A in the introduction. First we make a few

definitions. Let Φn(X) =
∑p−1
i=0 X

ipn−1

be the pn-th cyclotomic polynomial and

ωn(X) = (X + 1)p
n − 1. Also set

ω̃+
n =

∏
15m5n
m even

Φm(X + 1), ω̃−n =
∏

15m5n
m odd

Φm(X + 1), ω̃±0 = 1

ω+
n = X · ω̃+

n and ω−n = X · ω̃−n . Note that ωn = X · ω̃+
n · ω̃−n

For any n ≥ 0 we define

qn =

{
pn − pn−1 + pn−2 − pn−3 + · · ·+ p2 − p+ 1 if 2|n
pn − pn−1 + pn−2 − pn−3 + · · ·+ p− 1 + 1 if 2 - n

qn is the degree of ω+
n or ω−n depending on whether n is even or odd, respectively.

We also define

0 −→ Sel1p∞(E/Kn) −→ Selp∞(E/Kn) −→
∏
p|p

H1(Kn,p, E[p∞])

E(Qp)⊗Qp/Zp

Let Sel1p∞(E/K∞) := lim−→
n

Sel1p∞(E/Kn)

For any n we write Trn/n−1 for the trace TrKn/Kn−1
or TrKn,v/Kn−1,v

where v is
a prime of Kn. It will be clear to the reader whether we mean the global or local
trace.

We now define our Heegner points. We fix a modular parametrization π :
X0(N) → E which maps the cusp ∞ of X0(N) to the origin of E (see [26] and
[3]). If we assume that every prime dividing N splits in K/Q, then it follows that
we can choose an ideal N such that OK/N ∼= Z/NZ. Let m be an integer that
is relatively prime to N and let Om = Z + mOK be the order of conductor m in
K. The ideal Nm = N ∩ Om satisfies Om/Nm ∼= Z/NZ and therefore the natural
projection of complex tori:

C/Om → C/N−1
m

is a cyclic N -isogeny, which corresponds to a point of X0(N). Let α[m] be its image
under the modular parametrization π. From the theory of complex multiplication
we have that α[m] ∈ E(K[m]) where K[m] is the ring class field of K of conductor
m.

We assume that all primes of K above p are totally ramified in K∞/K. This
implies that K∞/K and K[1]/K are linearly disjoint (K[1] is the Hilbert class field
of K). It follows from this that for any n ≥ 1 that K[pn+1] is the ring class field of
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minimal conductor that contains Kn. For any n ≥ 0, we now define αn ∈ E(Kn)
to be the trace from K[pn+1] to Kn of α[pn+1].

Let p ≥ 5 be a prime. Assume that p splits in K/Q. From section 3.3 of [23] it
follows that

Tr1/0(α1) = (ap − (ap − 2)−1(p− 1))α0 (1)

Trn+1/n(αn+1) = apαn − αn−1 for n ≥ 1 (2)

Since E has supersingular reduction at p and p ≥ 5, ap = 0 so therefore we have

Tr1/0(α1) =
p− 1

2
α0 (3)

Trn+1/n(αn+1) = −αn−1 for n ≥ 1 (4)

Lemma 2.1. Assume that p ≥ 5, all primes dividing pN split in K/Q and all
primes of K above p are totally ramified in K∞/K. For any n ≥ 0 we have
ω+

2nα2n = 0 and ω−2n+1α2n+1 = 0

Proof. From equation (4) above we have ω+
2nα2n = (γ−1)ω̃+

2nα2n = (γ−1)±α0 = 0.
A similar proof using also equation (3) shows that ω−2n+1α2n+1 = 0 �

We will need the following three intermediate results before proving theorem A

Proposition 2.2. Assume that p ≥ 5, p splits in K/Q and all primes of K above
p are totally ramified in K∞/K. For any n ≥ 0 we have exact sequences

0 −→ K
i−−→ Sel+p∞(E/Kn)⊕ Sel−p∞(E/Kn)

j−−→ Selp∞(E/Kn) −→ C −→ 0

0 −→ Kω±n =0 i−−→ Sel+p∞(E/Kn)ω
+
n =0⊕Sel−p∞(E/Kn)ω

−
n =0 j−−→ Selp∞(E/Kn) −→ C ′ −→ 0

where i is the diagonal embedding, j is (x, y) 7→ x − y, K = Sel1p∞(E/Kn) and
C,C ′ are finite.

Proof. The description of the kernels of the maps j above follow from [12] prop.
4.11 and lemma 4.13. Clearly, the finiteness of C will follow from the finiteness
of C ′. The latter is essentially proposition 10.1 of Kobayashi’s paper [14]. Given
P ∈ Selp∞(E/Kn)div Kobayashi finds P+ ∈ Sel+p∞(E/Kn) and P− ∈ Sel−p∞(E/Kn)

such that j(P+, P−) = P . We only need to show that ω+
n P

+ = 0 and ω−n P
− = 0.

For a suitably chosen Q ∈ Selp∞(E/Kn), A,B ∈ Zp[X] Kobayashi defines P+ =

A(γ− 1)ω̃−nQ and P− = B(γ− 1)ω+
nQ. Since ω+

n ω̃
−
n = γp

n − 1 and (γp
n − 1)Q = 0

therefore we see that ω+
n P

+ = 0. Similarly one shows that ω−n P
− = 0. �

Proposition 2.3. Assume that p ≥ 5, all primes dividing pN split in K/Q and all
primes of K above p are totally ramified in K∞/K. Let p be a prime of K∞ above
p. Then we have rankZp

(img ρn,p) ≥ pn +O(1)
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Proof. To prove this proposition we adapt Bertolini’s strategy ([2] prop. 5.2
and theorem 5.3) from the ordinary case to the supersingular case. We will
need to consider the Heegner points α2n and α2n+1 separately. For any n, let
E(Kn)p := E(Kn)⊗ Zp be the p-adic completion of E(Kn). Denote by E(E/Kn)p
the submodule Zp[Gn]αn of E(Kn)p spanned by the group ring Zp[Gn] acting on
αn. We claim that for any n the map resn : E(Kn)p → E(Kn+1)p induced by
inclusion is injective. To see this, we show that for any m the map induced by in-
clusion resn,pm : E(Kn)/pm → E(Kn+1)/pm is injective. Suppose that P ∈ E(Kn)
satisfies pmQ = P for some Q ∈ E(Kn+1). Let σ be a generator of Gal(Kn+1/Kn).
Then we have pm(σ(Q) − Q) = σ(pmQ) − pmQ = σ(P ) − P = 0. But by [12]
lemma 2.1 we have E(K∞)[p∞] = {0}. Therefore σ(Q)−Q = 0 which implies that
Q ∈ E(Kn). This shows that resn,pm is injective which, in turn, shows that resn is
injective.

Now consider the restriction of resn to E(E/Kn) r̃esn : E(E/Kn) →
resn(E(E/Kn)). As resn is injective, r̃esn is an isomorphism. We now consider
the Heegner points α2k. The norm relation (4) shows that for any n ≥ 1 we have

Tr2n/2n−1(E(E/K2n)) = img r̃es2n−2 and so r̃es
−1
2n−2 ◦ Tr2n/2n−1 defines a surject-

ive map E(E/K2n) → E(E/K2n−2). Using these maps, we define E†(E/K∞)+
p :=

lim←−E(E/K2n)p. This is a cyclic Λ-module which is nonzero if and only if for some

n α2n has infinite order (note that E(K∞)[p∞] = 0 by [12] lemma 2.1). Using the
results of Cornut [6] and Cornut-Vatsal [7] it can be shown as in [17] prop. 4.1 that
α2n has infinite order for some n. Hence E†(E/K∞)+

p is a nonzero cyclic Λ-module.

We now turn to the local setting. Let Ê be the formal group of E/Q. Combining

Mattuck’s theorem, [12] lemma 2.1 and [25] IV prop. 2.3, we see that Ê(Kn,p) is a

free Zp-module. Therefore lim←−
m

Ê(Kn,p)/pm = Ê(Kn,p). Now Ê(Kn,p) is isomorphic

to E1(Kn,p) = ker(E(Kn,p) → Ē(Fp)). Since E has supersingular reduction at

p, therefore Ē(Fp)[p] = {0}. This implies that Ê(Kn,p) = lim←−
m

Ê(Kn,p)/pm =

E(Kn,p)p. Define Ê±(Kn,p) ∼= E1(Kn,p)∩E±(Kn,p) where E±(Kn,p) is defined as

in the introduction. Since Ê(Kn,p) is a free Zp-module so are both Ê±(Kn,p).

Theorem 4.5 of [12] shows that there exist dn ∈ Ê(Kn,p) such that
Trn+1/n(dn+1) = −dn−1 (for n ≥ 1) and Tr1/0(d1) = u · d0 for some u ∈ Z×p .
From (3) and (4) we see that the norm relations for the Heegner points αn and
the points dn are identical. Lemma 4.13 of [12] shows that for any n ≥ 0 we have

Ê+(K2n,p) = Zp[Gn]d2n and Ê−(K2n+1,p) = Zp[Gn]α2n+1. We shall work with Ê+

now. By what we just mentioned, we see as in the global case, that we may form
the inverse limit Ê†(K∞,p)+ := lim←− Ê

+(K2n,p).

CLAIM: Ê†(K∞,p)+ is a free Λ-module of rank 1 such that for any n the nat-

ural map π+
2n : Ê†(K∞,p)+/ω+

2n → Ê+(K2n,p) is an isomorphism (this map exists
because of the analog of lemma 2.1 for the points d2n).

To see this, let n ≥ 0. Since the maps defining the inverse limit Ê†(K∞,p)+

are surjective, therefore π+
2n is surjective. Prop. 4.15(3) of [12] shows that

rankZp(Ê+(K2n,p)) = rankZp(Λ/ω+
2n) = q2n. Therefore from the surjectivity of

π+
2n, it follows that rankZp

(Ê†(K∞,p)+/ω+
2n) is unbounded and hence Ê†(K∞,p)+

is a free Λ-module of rank 1 since it is cyclic and not torsion. The injectivity of π+
2n

follows from comparing the Zp-ranks of the domain and codomain of π+
2n.
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Consider the localization map ρ̃2n,p : E(E/K2n)p → E(K2n,p)p. Lemma 2.1

implies that img ρ̃2n,p ⊆ Ê+(K2n,p). Therefore we get a map ρ̃+
∞,p : E†(E/K∞)+

p →
Ê†(K∞,p)+. Since E†(E/K∞)+

p is a cyclic Λ-module and Ê†(K∞,p)+ is torsion-free,

therefore ρ̃+
∞,p is injective if and only if it is nonzero. This is equivalent to saying

that ρ̃2n,p is nonzero for some n. As explained before, α2n has infinite order for
some n and hence ρ̃2n,p(α2n) is nonzero. This shows that ρ̃+

∞,p is injective.

We now determine rankZp
(img ρ̃2n,p). Fix an isomorphism Ê†(K∞,p)+ ∼= Λ. As

ρ̃+
∞,p is injective, we may identify E†(E/K∞)+

p with fΛ for some nonzero f ∈ Λ.
From the claim above we have

rankZp
(img ρ̃2n,p) = rankZp

(fΛ + ω+
2nΛ/ω+

2nΛ)

= rankZp(fΛ/fΛ ∩ ω+
2nΛ)

= rankZp
(fΛ/ω+

2nfΛ)− rankZp
(fΛ ∩ ω+

2nΛ/ω+
2nfΛ)

Since rankZp
(fΛ/ω+

2nfΛ) = q2n and rankZp
(fΛ∩ω+

2nΛ/ω+
2nfΛ) is bounded therefore

we get that rankZp(img ρ̃2n,p) = q2n +O(1)
In an almost identical fashion, one considers the Heegner points α2n+1 and the

group Ê−(K2n+1,p) and constructs the appropriate inverse limits. If one then
defines ρ̃2n+1,p analogously as above, one can show that rankZp(img ρ̃2n+1,p) =
q2n+1 +O(1).

We can now finally complete the proof. Let n ≥ 1. Define B := Zp[Gn]αn,
C := Zp[Gn]αn−1 and let A := B + C ⊆ E(Kn)p. Then we have

rankZp
(ρn,p(A)) = rankZp

(img ρ̃n,p) + rankZp
(img ρ̃n−1,p)− rankZp

(ρn,p(B) ∩ ρn,p(C))

= qn +O(1) + qn−1 +O(1)− rankZp
(ρn,p(B) ∩ ρn,p(C))

= pn + 1− rankZp(ρn,p(B) ∩ ρn,p(C)) +O(1)

Now note that ρn,p(B) ∩ ρn,p(C) ⊆ Ê+(Kn,p) ∩ Ê−(Kn,p). By [12] prop. 4.11,

Ê+(Kn,p)∩Ê−(Kn,p) = Ê(Qp). Since rankZp
(Ê(Qp)) = 1, it therefore follows from

the above that rankZp
(ρn,p(A)) = pn +O(1). This implies that rankZp

(img ρn,p) ≥
pn +O(1) which completes the proof of the proposition. �

Lemma 2.4. Assume that p splits in K/Q. For any n ≥ 0, the map Sel1p∞(E/K)→
Sel1p∞(E/Kn)Γ induced by restriction is an injection with finite cokernel.

Proof. Define S to be the set of primes of K dividing Np and Sn to be the primes of
Kn above those in S. Now define KS to be the maximal extension of K unramified
outside S, GS(K) = Gal(KS/K) and GS(Kn) = Gal(KS/Kn). Let p1 and p2 be the
primes of Kn above p. We define Pp(E/Kn) =

∏
i=1,2(H1(Kn,pi

, E[p∞])/(E(Qp)⊗
Qp/Zp)) and P∗(E/Kn) =

∏
v∈Sn\{p1,p2}H

1(Kn,v, E)[p∞]. Similarly we define

Pp(E/K) and P∗(E/K).
We have a commutative diagram

0 // Sel1p∞(E/Kn)Γ // H1(GS(Kn), E[p∞])Γ // Pp(E/Kn)Γ × P∗(E/Kn)Γ

0 // Sel1p∞(E/K)

s

OO

// H1(GS(K), E[p∞])

h

OO

ψ
// Pp(E/K)× P∗(E/K)

g

OO

(5)
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Applying the snake lemma to the above diagram we get

0→ ker s→ kerh→ ker g ∩ imgψ → coker s→ cokerh

By [12] lemma 2.1 we have E(K∞)[p∞] = {0} and so the map h is an isomorphism.
Therefore from the above exact sequence we get that s is an injection and that
coker s = ker g∩ imgψ. Therefore to complete the proof of the lemma it will suffice
to show that ker g is finite.

Let v be a prime of K that does not divide p and consider the map gv :
H1(Kv, E)[p∞]→ (⊕w|vH1(Kn,w, E)[p∞])Γ where the sum is taken over all primes
w of Kn above v. It can be shown by Shapiro’s lemma along with the inflation re-
striction sequence that ker gv = H1(Γw, E) where Γw is the decomposition group of
Γ at a prime w of Kn above v. It follows from [21] proposition I-3.8 that H1(Γw, E)

is finite of order c
(p)
v = pordp(cv).

To complete the proof it will suffice to show that the restriction map

gp :
H1(Kp, E[p∞])

E(Qp)⊗Qp/Zp
→
(H1(Kn,p, E[p∞])

E(Qp)⊗Qp/Zp

)Γ

is injective where p is a prime of Kn above p
To prove this, consider the following commutative diagram

0 // (E(Qp)⊗Qp/Zp)Γ // H1(Kn,p, E[p∞])Γ //

(
H1(Kn,p,E[p∞])
E(Qp)⊗Qp/Zp

)Γ

0 // E(Qp)⊗Qp/Zp

g′p

OO

// H1(Kp, E[p∞])

g′′p

OO

// H
1(Kn,p,E[p∞])
E(Qp)⊗Qp/Zp

gp

OO

// 0

(6)
Applying the snake lemma to the above diagram we see that to show ker gp = 0,
we only need to show that ker g′′p = 0 and coker g′p = 0. Now g′p is an isomorphism

so coker g′p = 0. As for ker g′′p we have ker g′′p = H1(Gal(Kn,p/Kp), E(Kn,p)[p∞]).

By [12] lemma 2.1 E(Kn,p)[p∞]Γ = E(Kp)[p∞] = {0} so E(Kn,p)[p∞] = {0}. This
shows that ker g′′p = 0 which completes the proof. �

We now prove theorem A

Theorem A. Assume that p ≥ 5, all primes dividing pN split in K/Q and both
primes of K above p are totally ramified in K∞/K. The following are equivalent

(a) Selp∞(E/K∞)dual has Λ-rank two

(b) Both Sel±p∞(E/K∞)dual have Λ-rank one
(c) corankZp(Selp∞(E/Kn)) = pn +O(1) and rankZp(img ρn,p) = pn +O(1)

(d) H2(GS(K∞), E[p∞]) = 0
(e) Rp∞(E/K∞)dual is Λ-torsion

Proof. We have that (d) and (e) are equivalent by [19] theorem 2.2.
We now show that (a) and (d) are equivalent. Let v be a prime of K above p

and w a prime of K∞ above v. Since v ramifies in K∞/K, therefore the extension
K∞,w/Kv is deeply ramified in the sense of [5]. So as explained in [9] pg. 70 we
have H1(K∞,w, E)[p∞] = 0. Combining this with [10] prop. 2, it follows that∏
v∈S∞ H

1(K∞,v, E)[p∞] is Λ-cotorsion.
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From the definition of Selp∞(E/K∞) it follows that corankΛ(Selp∞(E/K∞)) =
corankΛ(H1(GS(K∞), E[p∞]). Also Greenberg [10] prop 3 and 4 has shown
that corankΛ(H1(GS(K∞), E[p∞])) + corankΛ(H2(GS(K∞), E[p∞]) = 2 and that
H2(GS(K∞), E[p∞]) is a cofree Λ-module. The equivalence of (a) and (d) follows.

Now we show that (a) implies (b). Assume that corankΛ(Selp∞(E/K∞)) = 2.
Taking the direct limit (with respect to restriction) of the first exact sequence in
proposition 2.2 we get an exact sequence

0→ Sel1p∞(E/K∞)→ Sel+p∞(E/K∞)⊕ Sel−p∞(E/K∞)→ Selp∞(E/K∞) (7)

We now show that Sel1p∞(E/K∞) is Λ-cotorsion. Let S̃∞ := S∞ \ {p∞, p̄∞} where
p∞, p̄∞ are the primes of K∞ above p.

Now define

L(K∞) =
∏
i=1,2

E(Qp)⊗Qp/Zp ×
∏
v∈S̃∞

E(K∞,v)⊗Qp/Zp.

and consider the commutative diagram

0

��

// H1(GS(K∞), E[p∞])

��

// H1(GS(K∞), E[p∞])

��

// 0

0 // L(K∞) //

∏
v∈S∞

H1(K∞,v, E[p∞]) //

∏
v∈S∞

H1(K∞,v, E[p∞])/L(K∞) // 0

(8)
Applying the snake lemma to this diagram we get an exact sequence

0 −→ Rp∞(E/K∞) −→ Sel1p∞(E/K∞) −→ L(K∞) (9)

For any v ∈ S̃∞ we have E(K∞,v) ⊗ Qp/Zp = 0 this is because for any n by
Mattuck’s theorem have E(Kn,v) ∼= Zrl × T where r is some integer, T is a finite
group and l 6= p is the rational prime below v. Therefore it follows that L(K∞)
is Λ-cotorsion. Also by the equivalence of (a) and (e) shown above we have that
Rp∞(E/K∞) is Λ-cotorsion. The exact sequence (9) then shows that Sel1p∞(E/K∞)
is Λ-cotorsion.

Since Sel1p∞(E/K∞) is Λ-cotorsion, therefore from the sequence (7) we get that

corankΛ(Sel+p∞(E/K∞)⊕Sel−p∞(E/K∞)) ≤ 2. We see that (b) will follow if we can

show that corankΛ(Sel±p∞(E/K∞)) ≥ 1. So we get (b) from [15] prop 4.7.

We now show that (b) implies (c). Assume that corankΛ(Sel±p∞(E/K∞)) =
1. First we show corankZp(Selp∞(E/Kn)) = pn + O(1). Since

corankΛ(Sel±p∞(E/K∞)) = 1, therefore corankZp
(Sel±p∞(E/K∞)ω

±
n =0) =

degω±n + O(1). By [12] theorem 6.8 the natural map Sel±p∞(E/Kn)ω
±
n =0 →

Sel±p∞(E/K∞)ω
±
n =0 has finite kernel and cokernel. Therefore

corankZp
(Sel±p∞(E/Kn)ω

±
n =0) = degω±n + O(1) Since degω+

n + degω−n =
qn + qn−1 = pn + 1, therefore we see by the second exact sequence in prop 2.2 that
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in order to show corankZp
(Selp∞(E/Kn)) = pn + O(1), it will suffice to show that

corankZp(Sel1p∞(E/Kn)ω
±
n =0) is bounded with n.

Now X is a greatest common divisor of ω+
n (X) and ω−n (X) in Qp[X].

It follows that there exist polynomials A(X), B(X) ∈ Zp[X] such that
A(X)ω+

n (X) + B(X)ω−n (X) = pmX for some integer m. This shows that

Sel1p∞(E/Kn)ω
±
n =0 ⊆ Sel1p∞(E/Kn)p

m(γ−1)=0 (Sel1p∞(E/Kn)p
m(γ−1)=0 means

the subgroup of Sel1p∞(E/Kn) annihilated by pm(γ − 1)). Therefore it

suffices to show that corankZp
(Sel1p∞(E/Kn)p

m(γ−1)=0) is bounded with n.

As pm Sel1p∞(E/Kn)p
m(γ−1)=0 ⊆ Sel1p∞(E/Kn)Γ and Sel1p∞(E/Kn)[pm] ⊆

Selp∞(E/Kn)[pm] is finite, we only have to show that corankZp
(Sel1p∞(E/Kn)Γ)

is bounded with n. This follows from lemma 2.4.
If p is a prime of K∞ above p, proposition 2.3 shows that rankZp(img ρn,p) ≥

pn+O(1). It follows that rankZp
(img ρn,p) ≥ pn+O(1). Since rankZp

(Sp(E/Kn)) ≥
rankZp

(img ρn,p) we get equality. Hence we get (c).
Finally (c) implies (d) follows from [2] theorem 3.1. This completes the proof of

theorem A. �

3. Proof of Theorem B

In this section we prove theorem B by a similar technique used in the proof of
the ordinary case in [17]. We will prove theorem B for Sel+p∞(E/K∞). The proof

for Sel−p∞(E/K∞) will be similar. We use all the notation and definitions from
the introduction and the previous section. Throughout this section we assume the
following

(i) All the primes dividing pN split in K/Q
(ii) p does not divide 6hKϕ(NdK) ·

∏
`|N cv

(iii) p does not divide the number of geometrically connected components of the
kernel of π∗ : J0(N)→ E.

As we just mentioned, theorem B will be proven by adapting the proof of the-
orem A in [17]. The first important observation is that since E has good super-
singular reduction at p, therefore E[p] is an irreducible Gal(Q(E[p])/Q)-module
(see [13] prop 4.4 or [24] prop 12(c)). In [17] we imposed the condition that
Gal(Q(E[p])/Q) = GL2(Fp). In order to adapt the proof of theorem A in [17]
to our setting we will need to show that Gal(Q(E[p])/Q) = GL2(Fp) may be re-
placed by the condition that E[p] is an irreducible Gal(Q(E[p])/Q)-module in that
paper. We now explain this. First we prove lemma 2.3 in [17]

Lemma 3.1. The extensions Q(E[p])/Q and K∞/Q are linearly disjoint

Proof. Q(E[p])/Q and K/Q are linearly disjoint just as in the proof of lemma 2.3.
We now show that K(E[p])/K and K∞/K are disjoint. If they were not disjoint,
then G := Gal(K(E[p])/K) = Gal(Q(E[p])/Q) would a normal subgroup N of
index p and hence in particular the order of G would be divisible by p. This implies
by Dickson’s classification of subgroups of GL2(Fp) ([8] sec 260) that SL2(Fp) ⊆ G
(the other possibility is that G is contained in a Borel subgroup. This is ruled out
by the fact that E[p] is an irreducible Gal(Q(E[p])/Q)-module). Then as in lemma
2.3, we must have that N ∩SL2(Fp) has both order and index greater than 2. This
contradicts that fact that PSL2(Fp) is simple for p ≥ 5. �
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In [17], we defined Ln := Kn(E[p]) and Gn := Gal(Ln/Kn). We need to prove
proposition 2.6 in [17]

Proposition 3.2. The restriction map induces an isomorphism:

res : H1(Kn, E[p]) ∼−→ H1(Ln, E[p])Gn = HomGn(Gal(Q/Ln), E[p])

Proof. To prove this proposition we need to show that (∗) Hi(Gn, E[p]) = 0 for i =
1, 2. By the above lemma, we have Gn = Gal(Q(E[p])/Q). When Gal(Q(E[p])/Q) =
GL2(Fp), we can use Serre’s proof as in [11] prop. 9.1. In general, when E[p] is an
irreducible Fp[GQ]-module we note that # det(Gn) = #χp,Q(Gn) > 2 (since p > 3)
where χp,Q : GQ → F×p is the mod p cyclotomic character. This implies by [20] prop
5.15 that Gn contains a nontrivial homothety. Then one gets (∗) either by adapting
Serre’s proof or by Sah’s lemma (see [20] 5.5.2). �

Proposition 9.3 in Gross’s paper [11] was used in a number of places in [17] (see
for example pg. 424). Gross proves this proposition under the assumption that
Gal(Q(E[p])/Q) = GL2(Fp). Proposition 3.2 above shows that [11] prop. 9.3 holds
under the weaker assumption that E[p] is an irreducible Fp[GQ]-module.

The above results show that we may indeed replace Gal(Q(E[p]),Q) =
GL2(Fp) in [17] by the condition (which holds here) that E[p] is an irreducible
Gal(Q(E[p]))/Q)-module.

Now let A be a discrete Γ-module annihilated by p. For any n ≥ 1 we have

Tr2n/2n−1(Aω
+
2n=0) ⊆ Aω

+
2n−2=0. Using these maps we can form the inverse limit

lim←−A
ω+

2n=0. We now have the following important proposition

Proposition 3.3. If M is a finitely generated Λ-module, then the module M+ :=

lim←−(Mdual)ω
+
2n=0 is a free Λ-module of same rank as M

Proof. As M is a finitely generated Λ-module and Λ is a PID, therefore M is
isomorphic to Λr × T for some r ≥ 0 and some finite group T . From this we see

that to prove the proposition, we only need to show that (i) lim←−(T dual)ω
+
2n=0 = 0

and that (ii) lim←−(Λdual)ω
+
2n=0 ∼= Λ

First we show (i). Since T dual is a finite discrete Γ-module, there exists s ≥ 0
such that Γs acts trivially on T dual. Then for all n ≥ s, Tr2n/2n−1 annihilates T dual.

It follows that lim←−(T dual)ω
+
2n=0 = 0

We now show (ii). Since Λ/ω+
2n is a finite group, therefore we have an isomorph-

ism (Λ/ω+
2n)dual ∼= Λ/ω+

2n. If we choose the isomorphisms appropriately, then we
get a commutative diagram where πn is the canonical projection

(Λ/ω+
2n)dual

Tr2n/2n−1

��

∼
// Λ/ω+

2n

πn

��

(Λ/ω+
2n−2)dual ∼

// Λ/ω+
2n−2

The above diagram shows that

lim←−(Λdual)ω
+
2n=0 ∼= lim←−(Λ/ω+

2n)dual ∼= lim←−Λ/ω+
2n
∼= Λ

This completes the proof. �
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Proposition 3.4. For any n ≥ 0, the natural map H1(Kn, E[p])→ H1(Kn, E[p∞])
induces an isomorphism Sel+p (E/Kn) ∼= Sel+p∞(E/Kn)[p]

Proof. Let ψn : Selp(E/Kn) → Selp∞(E/Kn)[p] and ψ
′+
n : Sel+p (E/Kn) →

Sel+p∞(E/Kn)[p] induced from the map H1(Kn, E[p]) → H1(Kn, E[p∞]). By [12]
lemma 2.1 E(K∞)[p∞] = {0}. Therefore ψn is an isomorphism. From this an the

snake lemma, we get that ψ
′+
n is an injection and its cokernel is contained in the

kernel of the map

ψ+
n,p :

⊕
p|p

H1(Kn,p, E[p])

E+(Kn,p)⊗ Fp
→
⊕
p|p

H1(Kn,p, E[p∞])

E+(Kn,p)⊗Qp/Zp

We now show that ψ+
n,p is an injection. Let p be a prime of Kn above p. We

need to show that the map

ψ+
n,p :

H1(Kn,p, E[p])

E+(Kn,p)⊗ Fp
→ H1(Kn,p, E[p∞])

E+(Kn,p)⊗Qp/Zp
is an injection.

Consider the map

ψn,p :
H1(Kn,p, E[p])

E(Kn,p)⊗ Fp
→ H1(Kn,p, E[p∞])

E(Kn,p)⊗Qp/Zp
Since H1(Kn,p, E)[p] ∼= H1(Kn,p, E[p])/(E(Kn,p) ⊗ Fp), H1(Kn,p, E)[p∞] ∼=

H1(Kn,p, E[p∞])/(E(Kn,p) ⊗ Qp/Zp) and the inclusion map H1(Kn,p, E)[p] →
H1(Kn,p, E)[p∞] is an injection, therefore ψn,p is an injection. Now consider the
following commutative diagram

E(Kn,p)⊗Qp/Zp

E+(Kn,p)⊗Qp/Zp

// H
1(Kn,p,E[p∞])

E+(Kn,p)⊗Qp/Zp

// H
1(Kn,p,E[p∞])

E(Kn,p)⊗Qp/Zp

E(Kn,p)⊗Fp

E+(Kn,p)⊗Fp

ψ
′+
n,p

OO

// H
1(Kn,p,E[p])

E+(Kn,p)⊗Fp

ψ+
n,p

OO

// H
1(Kn,p,E[p])
E(Kn,p)⊗Fp

ψn,p

OO

Since ψn,p is an injection, the above commutative diagram shows that to prove

that ψ+
n,p is an injection, we only need to show that ψ

′+
n,p is an injection. We have

E(Kn,p)⊗Qp/Zp = lim−→E(Kn,p)/pm where the transition maps in the direct limit
are induced by the multiplication-by-p map.

Suppose that P + pE(Kn,p) ∈ E(Kn,p)/p considered as an element of
lim−→E(Kn,p)/pm is contained in lim−→E+(Kn,p)/pm. This implies that there exists

Q ∈ E+(Kn,p) and an t ≥ 1 such that ptP−Q ∈ pt+1E(Kn,p) i.e. ptP−Q = pt+1P ′

for some P ′ ∈ E(Kn,p). This gives pt(P − pP ′) = Q. Let S = P − pP ′. We want
to show that S ∈ E(Kn,p)+. To this end, let m be an odd integer with 1 ≤ m ≤ n.
Since Q ∈ E+(Kn,p) we have pt Trn/m(S) = Trn/m(Q) ∈ E(Km−1,p).

Now let T = Trn/m(S). We need to show that T ∈ E(Km−1,p). Let σ be a
generator of Gal(Km,p/Km−1,p). Then we have pt(σ(T )− T ) = σ(ptT )− ptT = 0
because ptT ∈ E(Km−1,p). But by [12] lemma 2.1 we have E(K∞,p)[p∞]Γ =
E(Kp)[p∞] = {0} so E(K∞,p)[p∞] = {0}. Therefore σ(T ) − T = 0 which implies

that T ∈ E(Km−1,p) as desired. This proves that ψ
′+
n,p is an injection which as

mentioned above proves that ψ+
n,p is also an injection. This completes the proof. �



PLUS/MINUS SELMER GROUPS AND ANTICYCLOTOMIC Zp-EXTENSIONS 13

Theorem 3.5. For any n ≥ 0, the natural map

Sel+p (E/Kn)ω
+
n =0 → Sel+p (E/K∞)ω

+
n =0

is an isomorphism.

Proof. For any n ≥ 0, let sn : Sel+p∞(E/Kn)ω
+
n =0 → Sel+p∞(E/K∞)ω

+
n =0 be the

natural map induced by restriction. Note that we have assumed that p splits in
K/Q and that p does not divide the class number of K (which implies that K∞/K
is totally ramified at any prime of K above p). These two assumptions allow us to
use the results of Iovita and Pollack [12].

By theorem 6.8 of [12] sn is an injection with finite cokernel. The proof of
this result is based on the proof of [14] theorem 9.3. The proof reveals that the
cokernel of sn will be trivial if for any prime v of Kn not dividing p the kernel
of the restriction map gn,v : H1(Kn,v, E)[p∞] → ⊕w|vH1(K∞,w, E)[p∞] is trivial
and this is the case since p was assumed not to divide

∏
v|N cv (see the remark

following [9] lemma 3.3). Therefore sn is an isomorphism. The result now follows
from proposition 3.4. �

Now for any n, we let resn : H1(Kn, E[p]) → H1(Kn+1, E[p]) be the restriction
map and corn : H1(Kn, E[p]) → H1(Kn−1, E[p]) be the corestriction map. Using
the above theorem, we show

Proposition 3.6. For any n ≥ 1 and any s ∈ Sel+p (E/K2n)ω
+
2n=0, there exists

s′ ∈ Sel+p (E/K2n−2)ω
+
2n−2=0 such that cor2n(s) = res2n−2(s′)

Proof. Consider the following diagram

Sel+p (E/K2n)ω
+
2n=0

cor2n

��

∼
// Sel+p (E/K∞)ω

+
2n=0

Tr2n/2n−1

��

Sel+p (E/K2n−1) // Sel+p (E/K∞)

Sel+p (E/K2n−2)ω
+
2n−2=0

res2n−2

OO

∼
// Sel+p (E/K∞)ω

+
2n−2=0

ι2n−2

OO

In the diagram above the horizontal maps are restriction and the map ι2n−2 is
just the inclusion map. By theorem 3.5 the top and bottom horizontal maps are
isomorphisms. This diagram commutes.

For any t ∈ Sel+p (E/K∞)ω
+
2n=0 there exists t′ ∈ Sel+p (E/K∞)ω

+
2n−2=0 such that

Tr2n/2n−2(t) = ι2n−2(t′). Also by [12] lemma 2.1 E(K∞)[p∞] = 0 so the middle
horizontal map is an injection. The proposition follows easily from these two facts
using a diagram chase. �

For any n ≥ 1, consider the restriction map res2n−2 : Sel+p (E/K2n−2)ω
+
2n−2=0 →

Sel+p (E/K2n−1). By [12] lemma 2.1, E(K∞)[p∞] = 0 so res2n−2 is injective. The

above proposition shows that cor2n(Sel+p (E/K2n)ω
+
2n=0) ⊆ img res2n−2 and so if

we consider res2n−2 to be an isomorphism onto it’s image, therefore we see that

res−1
2n−2 ◦ cor2n defines a map from Sel+p (E/K2n)ω

+
2n=0 to Sel+p (E/K2n−2)ω

+
2n−2=0.

Using these maps, we construct the inverse limit. We now define X†p(E/K∞) :=
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lim←− Sel+p (E/K2n)ω
+
2n=0. Note that we have chosen to put an “†” in the superscript

so that the reader does not confuse this group with the group Xp(E/K∞) in [17] and
the groups Xs,p(E/K∞) and Xf,p(E/K∞) in [18] which were defined in a different
way.

We now have the following key theorem

Theorem 3.7. The group X†p(E/K∞) is a finitely generated Λ-module with

rankΛ(X†p(E/K∞)) = rankΛ(Sel+p (E/K∞)dual)

Proof. By [16] th. 4.5, we know that Selp∞(E/K∞)dual is a finitely generated
Λ-module. Since E(K∞)[p∞] = 0 by [12] lemma 2.1, therefore we have an iso-
morphism Selp(E/K∞) ∼−→ Selp∞(E/K∞)[p] and so Selp(E/K∞)dual is a finitely

generated Λ-module. Then same is true for Sel+p (E/K∞)dual since Sel+p (E/K∞) ⊆
Selp(E/K∞).

Now consider the group Y †p (E/K∞) := lim←− Sel+p (E/K∞)ω
+
2n=0 defined as

in the paragraph proceeding proposition 3.3. Proposition 3.3 shows that
Y †p (E/K∞) is a finitely generated free Λ-module with rankΛ(Y †p (E/K∞)) =

rankΛ(Sel+p (E/K∞)dual). Therefore to complete the proof, we only have to show

that X†p(E/K∞) and Y †p (E/K∞) are isomorphic.

Let n ≥ 1. The transition map from Sel+p (E/K∞)ω
+
2n=0 to Sel+p (E/K∞)ω

+
2n−2=0

in Y †p (E/K∞) is Tr2n/2n−1. Let ι2n−2 : Sel+p (E/K∞)ω
+
2n−2=0 ↪→ Sel+p (E/K∞) be

the inclusion map. One sees that Tr2n/2n−1(Sel+p (E/K∞)ω
+
2n=0) ⊆ img ι2n−2 and

so by considering ι2n−2 to be an isomorphism onto it’s image, we may write the
transition maps defining the inverse limit Y †p (E/K∞) as ι−1

2n−2 ◦ Tr2n/2n−1. This

shows that the restriction maps induce a map Ξ : X†p(E/K∞) → Y †p (E/K∞) and
it follows from theorem 3.5 that this map is an isomorphism. This completes the
proof. �

As in [17], we call a rational prime ` is called a Kolyvagin prime if ` is relatively
prime to Nd and Frob`(K(E[p])/Q) = [τ ] where τ is a fixed complex conjugation
on Q (the algebraic closure of Q).

If ` is a rational prime and F is a number field we define

E(F`)/p := ⊕λ|`E(Fλ)/p

H1(F`, E[p]) := ⊕λ|`H1(Fλ, E[p])

H1(F`, E)[p] := ⊕λ|`H1(Fλ, E)[p]

where the sum is taken over all primes of F dividing `.
With this notation we let res` be the localization map:

res` : E(F )/p→ E(F`)/p

res` : H1(F,E[p])→ H1(F`, E[p])

res` : H1(F,E)[p]→ H1(F`, E)[p]
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Now let ` be a Kolyvagin prime. For any n, local Tate duality gives a non-degenerate
pairing (see [11] prop. 7.5)

〈 , 〉′` : E(K2n,`)/p×H1(K2n,`, E)[p]→ Fp (10)

This induces a non-degenerate pairing

〈 , 〉′` : (E(K2n,`)/p)/ω
+
2n ×H1(K2n,`, E)[p]ω

+
2n=0 → Fp (11)

Now as ` is inert in K/Q and ` 6= p, it follows that ` splits completely in the
anticyclotomic Zp-extension K∞/K. We have E(Kn,`)/p = ⊕λn|`E(Kn,λn)/p. For

any λn|` we have by Mattuck’s theorem that E(Kn,λn
) ∼= Z2

` × T where T is a
finite group. This together with the fact that ` splits in K(E[p])/K implies that
E(Kn,λn

)/p = Z/pZ× Z/pZ. Thus we have an isomorphism

E(Kn,`)/p ∼= Rn ×Rn (12)

The above isomorphism shows that multiplication by ω̃−2n induces an isomorphism

θ : (E(K2n,`)/p)/ω
+
2n

∼−→ ω̃−2nE(K2n,`)/p = (E(K2n,`)/p)
ω+

2n=0. Thus we have a
non-degenerate pairing

〈 , 〉` : (E(K2n,`)/p)
ω+

2n=0 ×H1(K2n,`, E)[p]ω
+
2n=0 → Fp (13)

defined by the relation 〈a, b〉′` = 〈θ(a), b〉`.
Now let resn : H1(Kn,`, E[p]) → H1(Kn+1,`, E[p]) and corn : H1(Kn,`, E[p]) →

H1(Kn−1,`, E[p]) be the restriction and corestriction maps, respectively. We will
also let resn and corn denote these maps on E(Kn,`)/p and H1(Kn,`, E)[p]. Noting
that ω̃+

m = ω̃+
m−1 and ω+

m = ω+
m−1 when m is odd and ω̃−m = ω̃−m−1 and ω−m = ω−m−1

when m is even, we get a commutative diagram

(E(K2n,`)/p)/ω
+
2n

cor2n

��

×ω̃−2n
// (E(K2n,`)/p)

ω+
2n=0

cor2n
��

(E(K2n−1,`)/p)/ω
+
2n−2

cor2n−1

��

×ω̃−2n−1
// (E(K2n−1,`)/p)

ω+
2n−2=0

res−1
2n−2

��

(E(K2n−2,`)/p)/ω
+
2n−2

×ω̃−2n−2
// (E(K2n−2,`)/p)

ω+
2n−2=0

(14)

Let lim−→H1(K2n,`, E)[p]ω
+
2n=0 be the direct limit with transition maps being re-

striction and lim←−(E(K2n,`)/p)
ω+

2n=0 be the inverse limit with transition maps

res−1
2n−2 ◦ cor2n : (E(K2n,`)/p)

ω+
2n=0 → (E(K2n−2,`)/p)

ω+
2n−2=0.

A property of Tate local duality gives that 〈resn(a), b〉′` = 〈a, corn+1(b)〉′`. Taking
this and the above commutative diagram into account, we see that the pairing 〈 , 〉`
induces an isomorphism

lim−→H1(K2n,`, E)[p]ω
+
2n=0 ∼= (lim←−(E(K2n,`)/p)

ω+
2n=0)dual (15)
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Let n ≥ 0 be an integer and ` a Kolyvagin prime. By the definition of Sel+p (E/K2n),

we have res`(Sel+p (E/K2n)) ⊆ E(K2n,`)/p and so res`(Sel+p (E/K2n)ω
+
2n=0) ⊆

(E(K2n,`)/p)
ω2n+=0.

The definitions of X†p(E/K∞) and lim←−(E(K2n,`)/p)
ω+

2n=0 show that the trans-
ition maps of these groups are compatible with the maps res` and therefore the
maps res` induce a map

res` : X†p(E/K∞)→ lim←−(E(K2n,`)/p)
ω+

2n=0 (16)

Dualizing this map and using the isomorphism (15) above we get a map

ψ` : lim−→H1(K2n,`, E)[p]ω
+
2n=0 → X†p(E/K∞)dual

We now follow the proof of the ordinary case in [17] carefully making the necessary
adjustments to suit our setting. First we prove the analog of [17] prop. 2.5. We
remark that there is a mistake in the proof of [17]: In the last line of the proof the
Fp-dimension should be 2 + c rather that 2p+ c.

Proposition 3.8. If ` is a Kolyvagin prime, then lim−→H1(K2n,`, E)[p]ω
+
2n=0 is a

cofree Λ-module of rank two

Proof. Let Z := lim−→H1(K2n,`, E)[p]ω
+
2n=0. As in the proof of [17] prop. 2.5, we have

Zω
+
2n=0 = H1(K2n,`, E)[p]ω

+
2n=0 and for any λ2n|` we have H1(K2n,λ2n , E)[p] =

Z/pZ × Z/pZ. Therefore it follows that H1(K2n,`, E[p]) ∼= R2n × R2n. Just as we

observed after (12), we have R
ω+

2n=0
2n

∼= R2n/ω
+
2n. Summing up, we get Zω

+
2n=0 ∼=

R2n/ω
+
2n ×R2n/ω

+
2n
∼= Λ/ω+

2n × Λ/ω+
2n. The proposition follows from this. �

Let g be a topological generator of Γ. Since Xpn−1(p−1)Φn(X−1) = Φn(X)
and τgτ = g−1, therefore it easily follows from this and the fact that τ acts on

Sel+p (E/K2n) that τ acts on Sel+p (E/K2n)ω
+
2n=0 and hence also on X†p(E/K∞).

We define the sets and define the sets, U , V and L(U) in the same way as in
section 2 of [17]. Then as in [17] prop. 2.8 we get

Proposition 3.9. If U+ generates V +, then imgψ` with ` ranging over L (U)
generate X†p(E/K∞) dual

Also, using our modified pairing 〈 , 〉` we get as in [17] prop. 2.9 that

Proposition 3.10. For any n, if s ∈ Selp(E/K2n)ω
+
2n=0 and γ ∈

H1(Kn, E)[p]ω
+
2n=0, then ∑

`

〈res` s, res` γ〉` = 0

where the sum is taken over all the rational primes

Let r be a squrefree product of Kolyvagin primes. We define Kolyvagin classes
cn(r) ∈ H1(Kn, E[p]) and dn(r) ∈ H1(Kn, E)[p] as in section 2.2 of [17]. We need

Proposition 3.11. Let n ≥ 0 and r a squarefree product of Kolyvagin prime. Let
resn : H1(Kn, E[p])→ H1(Kn+1, E[p]) be the restriction map. Then we have

(a) Tr1/0(c1(r)) = res0(p−1
2 c0(r))

Trn+1/n(cn+1(r)) = − resn−1(cn−1(r)) for n ≥ 1
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(b) ω+
2nc2n(r) = 0

(c) ω+
2n+1c2n+1(r) = 0

Proof. If K[r] is the ring class field of K of conductor r, we defined in [17] section
2.2 Kn[r] to be KnK[r] and defined a Heegner point αn(r) ∈ Kn(r). From section
3 of [23] one sees that the points αn(r) satisfy identical norm relations to (3) and
(4) which were shown for the points αn. Therefore (a) follows from the definition
of cn(r) and diagram (3) in [17] section 2.2. (b) and (c) follow from (a) as in lemma
2.1. �

Let Rnαn denote the Rn-submodule of H1(Kn, E[p]) generated by the image of
αn under the Kummer map

E(Kn)→ H1(Kn, E[p]).

By [12] lemma 2.1 we have E(K∞)[p∞] = {0}. This implies that the restriction
map for m ≥ n

H1(Kn, E[p])→ H1(Km, E[p])

is injective and therefore allows us to view Rnαn as a submodule of H1(Km, E[p]).
The norm relation (4) in section 2 shows that R2nα2n ⊆ R2n+2α2n+2 and so we

may form the direct limit lim−→R2nα2n. From [17] theorem 4.1 we get

Theorem 3.12. The Λ-module (lim−→R2nα2n)dual is finitely generated and not tor-
sion

Then as in [17] section 3, the above theorem implies that there exists a nonzero
map

φ : Λ dual → lim−→Rnαn

and one chooses an auxiliary prime `1 and this map to show

Proposition 3.13. As a Λ-module (lim−→R2nc2n(`1))dual is finitely generated and
not torsion

Note that R2nc2n(`1) ⊆ R2n+2c2n+2(`1) by proposition 3.11. As in [17] section
3, one chooses s ∈ lim−→R2nα2n and s′ ∈ lim−→R2nc2n(`1) and proves as in [17] prop.

3.3 that s and s′ viewed as elements of H1(K∞, E[p]) are linearly independent over
Fp. Then one defines the set Sn0

⊂ H1(Kn0
, E[p]) and the set U in the same way

as in [17]. If ` 6= `1 is a Kolyvagin prime, then it follows from lemma 2.1 and

proposition 3.11 that res`(R2nα2n) ⊆ (E(K2n,`)/p)
ω+

2n=0 and res`(R2nc2n(`1)) ⊆
(E(K2n,`)/p)

ω+
2n=0. Then by the same proof of [17] prop. 3.4, we get

Proposition 3.14. For any ` ∈ L (U) the submodules lim−→ res`R2nα2n and

lim−→ res`R2nc2n(`1) of lim−→(E(K2n,`)/p)
ω2n=0 each have Λ-corank greater or equal

to one and together they generate a submodule of Λ-corank equal to two

Using property (3) of the Kolyvagin classes in section 2.2 of [17], the same proof
of [17] corollary 3.5 gives
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Corollary 3.15. For any ` ∈ L (U) the submodules lim−→ res`R2nd2n(`) and

lim−→ res`R2nd2n(``1) of lim−→H1(K2n,`, E)[p]ω
+
2n=0 each have Λ-corank greater or equal

to one and together they generate lim−→H1(K2n,`, E)[p]ω
+
2n=0

Using proposition 3.10 together with property (2) of the Kolyvagin classes in
section 2.2 of [17], one proves the analog of [17] prop. 3.6 by the same way

Proposition 3.16. For any ` ∈ L (U), imgψ` is a cofree Λ-module and imgψ` =
ψ`(lim−→ res`R2nd2n(``1))

Then in an identical way to [17] prop. 3.7, one proves

Proposition 3.17. We have rankΛ(X†p(E/K∞)) ≤ 1

We can now finally prove theorem B

Theorem B. Assume the following

(i) All the primes dividing pN split in K/Q
(ii) p does not divide 6hKϕ(NdK) ·

∏
`|N cv

(iii) p does not divide the number of geometrically connected components of the
kernel of π∗ : J0(N)→ E.

Then both Sel±p∞(E/K∞)dual have Λ-rank one and µ-invariant zero

Proof. By proposition 3.4 it follows that Sel+p∞(E/K∞)[p] ∼= Sel+p (E/K∞). There-

fore if X := Sel+p∞(E/K∞)dual, then X/p ∼= Sel+p (E/K∞)dual. We see from this that

to prove the theorem we only have to show that (i) rankΛ(Sel+p∞(E/K∞)dual) ≥ 1

and that (ii) rankΛ(Sel+p (E/K∞)dual) ≤ 1. (i) follows from [15] prop. 4.7 and
(ii) follows from the previous proposition together with theorem 3.7. This proves
theorem B for Sel+p∞(E/K∞). The proof for Sel−p∞(E/K∞) is similar. �
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2019, 455-501
[21] J.S. Milne, Arithmetic Duality Theorems, second ed., BookSurge, LLC, Charleston, SC, 2006.
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