SELMER GROUPS AND ANTICYCLOTOMIC Z,-EXTENSIONS

AHMED MATAR

ABSTRACT. Let E/Q be an elliptic curve, p a prime and K« /K the anticyc-
lotomic Zp-extension of a quadratic imaginary field K satisfying the Heegner
hypothesis. In this paper we give a new proof to a theorem of Bertolini which
determines the value of the A-corank of Selpec (E/K) in the case where E
has ordinary reduction at p. In the case where E has supersingular reduction
at p we make a conjecture about the structure of the module of Heegner points
mod p. Assuming this conjecture we give a new proof to a theorem of Ciperi-
ani which determines the value of the A-corank of Seljoo (E/Koo) in the case
where E has supersingular reduction at p.

1. INTRODUCTION

Let E be an elliptic curve of conductor N defined over Q and let K be an
imaginary quadratic field with discriminant dx # —3, —4 such that all the primes
dividing N split in K/Q. We will denote the class number of K by hx. Now suppose
p > 5 is a prime not dividing Ndxhkxp(Ndg) (together with some additional
restrictions listed in section 2.1).

Let K /K be the anticylotomic Z,-extension of K, I' = Gal(K/K) and K,
the unique subfield of K., containing K such that Gal(K,/K) = Z/p"Z.

For any n we let Sel, (E/K,,) denote the p>-Selmer group of E over K, defined
by

0 — Sely (E/Ky) — H'(Ky, Ep™)) — [ [ H' (Kn, B)[p™]

We also define the p>-Selmer group of E over K. as Sel,o(E/K.) =
lim Sely,« (E/K,).

Now let T,Sel, (E/K,,) be the p-adic Tate module of Sely (E/K,,). We will also
be interested in the pro-p Selmer group of E over K, defined as Xy (E/Ky) =
Jim T, Sely (E/K,) where the inverse limit is taken over m with respect to the
corestriction maps.

Finally, let A = Z,[[I']] be the Iwasawa algebra attached to K., /K. Fixing a
topological generator v € I" allows us to identify A with the power series ring Z,[[T7].
Throughout most of the paper we work “mod p” and so we will also consider the
“mod p” Iwasawa algebra A = A/pA = F,[[T]].

Let m : Xo(IN) — E be a modular parametrization of E which maps the cusp oo
of Xo(N) to the origin of FE and let E’ be a strong Weil curve in the isogeny class
of E, i.e. there exists a modular parametrization 7’ : Xo(XN) — E’ which maps the
cusp oo of Xo(INV) to the origin of E’ such that the induced map «, : Jo(N) — E’
has a geometrically connected kernel.

Choosing an ideal N of O such that O /N = Z/NZ allows us to define a
family of Heegner points «,, € E(K,,) using the modular parametrization 7 and a
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family of Heegner points o), € E’(K,) using the modular parametrization 7’ (see
section 2). We will make the following conjecture

Conjecture 1.1. Assume that p splits in K/Q and E has good supersingular re-
duction at p then the T'-submodule of E'(K)/p generated by the Heegner points
ol has A-corank greater than or equal to two.

We will give strong evidence in support of this conjecture. See theorem 4.1 and
the remarks following it.
In section 3 we will give a new proof to the following theorem of Bertolini [1]

Theorem A. Assume that E has good ordinary reduction at p, then Sely~ (E/K)
has A-corank equal to 1 and Xpe(E/Ko) is a free A-module of rank 1.

In section 4 we will prove the following theorem

Theorem B. Assume that p splits in K/Q, E has good supersingular reduction
at p and conjecture 1.1 is true, then Selpe(E/Ks) has A-corank equal to 2 and
Xp= (E/Ks) = {0}

The fact that Sel,~(E/Ks) has A-corank equal to 2 when both E has good
supersingular reduction at p and p splits in K/Q was proven by Ciperiani [6].
However, assuming the above conjecture, our proof of this fact will be different.

Regarding the two theorems above, we should note that neither Bertolini nor
Ciperiani require that p does not divide p(Ndg) whereas we assume it for our
proof.

Our proofs to Theorems A and theorem 4.1 in section 4 (the latter theorem
gives strong evidence supporting conjecture 1.1) very much rely on the work of
Cornut ([10] Theorem B) which proves that if p { ¢(Ndg) then the F,-vector span
of {o(a)) ® 1|0 € Gal(Ko/K)andn > 0} C E'(K) ® F,, has infinite dimension.

Our method of proof is an adaptation of the technique of Bertolini and Darmon
[2] to our Iwasawa theoretic setting. As mentioned above, throughout most of the
paper will work with the “mod p” Iwasawa algebra A = F,[[T]].

Specifically, we let X,,(E/Ko) = Xp (E/Ko)/p. We will show in the ordinary
case (theorem A) that the A-rank of X,(E/K) is less than or equal to one and in
the supersingular case (theorem B) that X, (E/K) = {0}. It then follows in the
ordinary case that the A-rank of X, (E/K) is also less than or equal to one and
in the supersingular case that X~ (E/K) = {0}.

Let us now define Yy, (E/K o) = Jim 7}, Sel o (E/Koo)rpn where the inverse limit
is taken over n with respect to the norm maps.

The control theorem in section 2.3 in the ordinary case (which is an easy con-
sequence of Mazur’s control theorem) gives that the restriction maps induce an iso-
morphism X, (E/Ks) = Ypoo (E/K). But then as we will explain in section 2.3
Y, (E/K o) is a free A-module whose rank is equal to the A-corank Selpe (E/K).
This together with the simple observation that the A-corank of Sel,e (E/Ks) is
greater than or equal to one will prove theorem A.

In the supersingular case the control theorem in section 2.3 gives that the re-
striction maps induce an injection Xjec(E/K o) < Yoo (E/K o) with cokernel of
A-rank less than or equal to two. Since X~ (E/K) = {0} we get that the A-rank
of Yy (E/K) is less than or equal to two. It then follows that the A-corank of
Selpe (E/Ko) is also less than or equal to two since it is equal to the A-rank of
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Y, (E/Ko). But by a well-known result in the supersingular case we know that
the A-rank of Sel,~(E/K.) is greater than or equal to two. This then proves
theorem B.

2. PRELIMINARIES

2.1. Notation and Assumptions. First we list the assumptions we need for the-
orems A and B. As in the introduction, F is an elliptic curve of conductor N defined
over Q and K be an imaginary quadratic field with discriminant dx # —3, —4 such
that all the primes dividing N split in K/Q. We will denote the class number
of K by hg. Throughout the paper we assume that p > 5 is a prime such that
p 1 Ndxhgo(Ndg). We will also assume that Gal(Q(E[p])/Q) = GLy(Fp). As-
suming F has no complex multiplication this excludes a finite number of primes by
a theorem of Serre [21]. In addition to these assumptions we further asuume the
following for theorems A and B.

For theorem A we assume:

(1) E has good ordinary reduction at p
(2) p1 E(F,)

(3) ap # —1 (mod p) if p is inert in K/Q
(4) ap ;7é 2 (mod p) if p splits in K/Q

For theorem B we assume:

(1) p splits in K/Q
(2) E has good supersingular reduction at p

Regarding the assumptions for theorem A, lets assume that p splits in K/Q.
Then if p > 7, conditions (1), (2) and (4) are equivalent to a, # 0,1, 2 by the Hasse
bound on a,. As explained in [1] pg. 166 the set of primes p such that a, # 0,1,2
has density 1 . We get a similar conclusion when p is inert in K/Q.

We will now explain the notation that we will use throught the paper. We fix a
complex conjugation T on Q (the algebraic closure of Q). Given a Z[3][r]-module
M, we have a decomposition M = M+ @ M~ where M and M~ denotes the
submodule on which 7 acts as +1, respectively —1. Also, if x € M and X C M,
we let

1
et = 5(3: + 7x)

= {2F |z e X}

For any m we let K[m] denote the ring class field of K of conductor m. Let
K[p*>®] = Up>1 K[p"]. Then Gal(K[p™]/K) is isomorphic to Z, x A, where A is a
finite abelian group. The unique Z,-extension that is contained in K [p>]/K is the
anticyclotomic Z,-extension of K which we will denote by K /K. We let K,, be
the subextension of K, of degree p™ over K.

Let I' = Gal(Ko/K). We will write I',, for the Galois group Gal(K/K,) =
I'?", G, for the Galois group Gal(K,,/K) = I'/T,, and R,, for the group ring F,[G,,].
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We let A = Z,[[I']] be the Iwasawa algebra attached to K /K. Fixing a topo-
logical generator v € I" allows us to identify A with the power series ring Z,[[T]).

We will also work with the “mod p” Iwasawa algebra A = A/pA = F,[[T]]. Note
that A is a PID.

Let us now define the Selmer groups we will be working with: If L/Q is any

algebraic extension we let Sel,(E/L) denote the p>-Selmer group of E over L
defined by

0 — Sely~ (E/L) — H'(L,E[p™]) — [[ H' (L., E)[p™]
We will also be working with the p-Selmer group Sel,(E/L) defined by
0 — Sel,(E/L) — H'(L,E[p]) — [[ H' (Lv, E)p]

Finally, if ¢ is a rational prime and F' is a number field we define

E(Fy)/p = @\ E(F))/p
H'(Fy, Blp)) = @xjeH' (Fx, E[p])
H'(Fy, E)[p] == ®xjeH' (Fx, B)[p]
where the sum is taken over all primes of F' dividing ¢.
With this notation we let res; be the localization map:
resg: E(F)/p — E(F;)/p
resy : H'(F, E[p]) — H'(F,, E[p])
res; : H'(F, E)[p] — H*(Fy, E)[p]
If F = K,,, with the above notation we let K,, ; denote F}.
We will frequently write lim (resp. @) for lim (resp. @) as our limits are
taken over n. ! "

2.2. Heegner points and Kolyvagin classes. We fix a modular parametrization
7 : Xo(N) — E which maps the cusp oo of Xo(N) to the origin of F (see [24] and
[4]) We have assumed that every prime dividing N splits in K/Q. It follows that
we can choose an ideal A such that Ox /N = Z/NZ. Let m be an integer that is
relatively prime to Ndg and let O,, = Z + mOg be the order of conductor m in
K. The ideal N,,, = N N O,, satisfies O,,/N,, =2 Z/NZ and therefore the natural
projection of complex tori:

C/Oy, — C/N;!

is a cyclic N-isogeny, which corresponds to a point of Xo(N). Let a[m] be its image
under the modular parametrization 7. From the theory of complex multiplication
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we have that a[m] € E(K[m]) where K[m] is the ring class field of K of conductor
m.

Then as we have assumed throughout the paper that the class number of K is
not divisible by p, it follows for any n that K[p"*!] is the ring class field of minimal
conductor that that contains K,. We now define a,, € E(K},) to be the trace from
K[p"*] to K,, of a[n].

Let R, denote the R,-submodule of H!(K,,, E[p]) generated by the image of
a;, under the Kummer map

E(Kn) - Hl(KmE[p])

We have that E(K[p>]) = {0} by corollary 2.4 of the next section. This implies
that the restriction map for m > n

H (K, Elp]) = H' (K, Elp])
is injective and therefore allows us to view R, as a submodule of H!(K,,, E[p]).
From section 3.3 of [20] we have

{TrKl/K(al) = (ap — agl(p +1))ag if pis inert in K/Q )

TrKl/K(oq) = (ap — (ap — 2)71(p —1))ag if p splits in K/Q

Trg, .\ /K, (Qnt1) = apay — a1 forn>1 (2)

In the ordinary case (theorem A), our assumptions together with (1) and (2) allow
us to conclude that (see [1] prop 2.1.4) Trg, . /k, (ny1) = uay, for some unit
u € R,. This implies that R,a, C Rpt10m41-

In the supersingular case (theorem B), the fact that E has supersingular reduc-
tion at p and p > 5 implies that a, = 0 so (2) becomes Trg, ., /k, (Qn1) = —ap_1.
This then implies that R,a, C Ryto0p42.

As in [7] section 2.5.1, we now describe the construction of Kolyvagin classes
over ring class fields following [2]. However, we should note that our definition of
Kolyvagin classes differs slightly from the one in [7] and [1]. First let us make the
following definition

Definition 2.1. A rational prime /£ is called a Kolyvagin prime if
(i) £ is relatively prime to pNdg
(ii) Frobe(K(E[p])/Q) = [7]

Let r be a squarefree product of Kolyvagin primes. For any n let K, [r] denote
the field K, K[r]. We now define a,(r) to be the trace of a[rp"™1] from K[rp™t!]
to K, [r].

Let G, » = Gal(K,[r]/K,[1]) and let Gy, = Gal(K,[¢]/K,[1]). By class field
theory G, = H12|r Gn,e and Gy, ¢ is cyclic of order £+ 1. Let o, be a generator of
Goi- Define Dy :=3";_, io} € Z/pZ|G ) and Dy := [, D¢ € Z/pZ|Gy ). Then
one can show that D,a,(r) belongs to (E(K,[r]/p))%"" (see [2] lemma 3.3). It
follows that Trg 11/x, Dran(r) € (E(Ky[r])/p)9>" where G, » = Gal(K,[r]/Kp).
Now consider the commutative diagram
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HY(Kn[r]/ Kn, E)[p]

inf

0— E(K,)/ p4>H1(Kn,E[ ) ——— HY(K,,,E)[p) ———0

L rest res

0 ——+ (B, 1)) /)% 2 HY ([ Elp)9r —— H' (K, 1), E)pl9

3)
Let ¢, (r) € H(K,, E[p]) be so that

¢r(Trg, 11/ K, Dron (1)) = Res(cn (7))

and let d,,(r) be the image of ¢, (r) in H'(K,, E)[p]. Note that c,(1) = ¢(ay,)
These Kolyvagin classes have the following properties:

(1) Let —e denote the sign of the functional equation of the L-function of E/Q,
f» be the number of prime divisors of » and 7. We have Ta,, = eg'™'ay, + 3,
with 8, € E(K,)ors, g a generator of Gal(K/K) and i, € {0,...,p" —
1}. Moreover, 7 acts on H'(K,, E[p]) and we can deduce that ¢, (r) =
€rgn ey (r) where €, = (—1)%re and 4, € {0,...,p" — 1}.

(2) If v is a rational prime that does not divide r, then d,(r),, = 0 in
HY(K,,, E)[p] for all primes of K,, v,|v.

(3) If £|r, there exists a Gp-equivariant and a 7-antiequivariant isomorphism:

1/%,@ : Hl(Kn,Ea E)[p} — E(Kn,i)/p

such that o, ¢(res; d, (1)) = rese(cn (r/£)).
If we let res, denote the restriction maps HY (K, E)p] —
HY (K410, E)[p] and E(K,¢)/p — E(Kpnt1,6)/p, then we have
Pny1,0 © T€Sy = T€Sy, O .
(4) In the ordinary case, just as R,a, C Ry,+1an+1 we also have R, ¢, (r) C

Ryt1¢n41(r) and R, d, (1) C Ruqt1dps1(r).
In the supersingular case, just as R,a, C R,i20,42 we also have
R,cn(r) C Rytocnyo(r) and R,d,(r) C Ryiodyio(r).

We end this section with the following proposition. Just as in [15] prop. 3.7 we

have

Proposition 2.2. Every prime Ay, of Kp[fm] above € lies above a unique prime
Am of Knp[m] and we have o, (¢m) = Frob(A,, /€)a,(m) mod App,

2.3. Preliminary Results. In this section, we collect some preliminary results
that will be used in the proofs of theorems A and B. First we have the following
important lemma

Lemma 2.3. The extensions Q(E[p])/Q and K /Q are linearly disjoint. In par-
ticular, Gal(K,,(E[p])/K,) is isomorphic to GLy(F)) for any n
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Proof. First we show that Q(E[p])/Q and K/Q are disjoint: the extension
Q(E[p])/Q is ramified only at primes dividing Np. This implies that the inter-
section of Q(E[p]) and K is an unramified extension of Q and therefore must be Q
itself. Therefore Q(F[p])/Q and K/Q are disjoint and we have Gal(K (E[p])/K) =

Gal(Q(E[p))/Q) = GLa(F,).

Now we show that K (E[p])/K and K., /K are disjoint. If they were not disjoint
then Gal(K(E[p])/K) = GLs(F,) would have a normal subgroup N of index p. As
SLy(F,) has index p — 1 in GL(F,), therefore by order considerations we must
have that N N SLy(F,) is a subgroup of SLy(F,) of both order and index greater
than 2. But this is impossible as PSLq(F,) is simple for p > 5. (I

Corollary 2.4. We have E(K)[p*>] = {0}

Now for any n and any rational prime £, local Tate duality gives a non-degenerate
pairing (see [15] prop. 7.5)

() )e: B(Kng)/p > H (Kng, B)[p] = Fp (4)

This identifies H* (K, ¢, E)[p] with (E(K, ¢)/p)3ua..
Moreover, if a € E(K,11.)/p and b € H'(K,, ¢, E)[p], then a property of Tate
local duality gives (coresa,b) = (a,resb) where
ves : H' (Ky 0, E)[p] = H'(Kny1,0, E)[p]

is the restriction map and

cores : E(Kpt1,4)/p = E(Knye)/p

is the corestriction map (the norm map). Therefore Tate local duality induces an
isomorphism

@Hl(Kn,éy E)[p] = (@E(Kn,l)/p)dual (5)

where the direct limit is taken over n with respect to the restriction maps and the
inverse limit is taken over n with respect to the corestriction maps.

The p-Selmer group Sel,(E/K,) consists of the cohomology classes s €
HY(K,, E[p]) whose restrictions res,(s) € H' (K, ., E[p]) belong to E(K, _,)/p for
all primes v of K,,, where we view E(K,, ,)/p as a subspace of H!(K, ,, E[p]) using
the Kummer sequence

0 — E(K,.,)/p— H (K., E[p]) — H (K., E)p] — 0
Therefore we have a map
resg : Sel,(E/Ky,) — E(K,0)/p (6)

Let T,,Sely~ (E/K,,) denote the p-adic Tate module of Sely (E/K,,). We now define
Xpe (E/Ks) = Jim 7}, Selpe (E/K,) where the inverse limit is taken over n with
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respect to the corestriction maps. We will denote X, (E/K)/p by Xp(E/Ks).
By corollary 2.4 for any n we have an isomorphism Sel, (E/K,,) = Sel,~ (E/K,)[p].
This allows us to view X,,(E/K,) as being a subgroup of im Sel,(E/K,,). We will
use this fact throughout the paper.

The map resy then induces a map

rese : XP(E/KOO) %@E(Knﬁ)/p (7)
Dualizing this map and using the isomorphism (5) above we get a map
Yo : lim H (K0, B)p] = Xp(B/Koo) ™!

Recall that A denotes the “mod p” Iwasawa algebra A/pA = F,[[T]]. Our goal in
theorems A and B is to determine the A-rank of X,(E/K) This will be done by
determining the A-corank of the image of ¥, for various primes ¢. To do this we
will need the following important observation

Proposition 2.5. If ¢ is a Kolyvagin prime, then li_n)lHl(Kn,@E)[p] s a cofree
A-module of rank 2

Proof. As ¢ is inert in K/Q and ¢ # p, it follows that ¢ splits completely in
the anticyclotomic Z,-extension K.,/K and so the submodule of I',-invariants
of @Hl(K,L,g,E)[p] is equal to H'(K,, ¢, E)[p] which is isomorphic to the dual of
E(Knye)/p = @, 10 E(Kn,)/p by local Tate duality. For any A, |¢ we have by Mat-
tuck’s theorem that E(K, ) = Z? x T where T is a finite group. This together
with the fact that ¢ splits in K(E[p])/K implies that E(K, x,)/p = Z/pZ x Z]/pZ
and so the submodule of I'-invariants of lim H (K0, E)[p] has F,-dimension 2p"

which implies that the A-corank of h£r1H YKy, E)[p] is equal to 2. Tt also follows

that li_r)nHl(ng, E)[p] is cofree as a A-module, for if it were not cofree the its sub-
module of I'-invariants would have F,-dimension 2p + ¢ for some positive integer
c. (I

Now for any n let L, = K, (F[p]) and G,, = Gal(L,,/K,,) which is isomorphic to
GLy(F,) by lemma 2.3. Then we have the following proposition ([15] prop. 9.1)

Proposition 2.6. The restriction map induces an isomorphism.:
res : H'(K,,, E[p|) = HY(L,, E[p])9" = Homg, (Gal(Q/L,,), E[p])

From the above proposition we get a pairing
[, ]+ H' Ky, Elp]) x Gal(Q/Ln) — Ep] (8)

Now assume that S,, C H'(K,, E[p]) is a finite subgroup. Let Galg, (Q/L,,) be the
subgroup consisting of p € Gal(Q/L,,) such that [s,p] = 0 for all s € S,, and let
Lg, be the fixed field of Galg, (Q/L,). Then Lg, /K, is a finite Galois extension
and the above pairing induces a nondegenerate pairing

[,]: S xGal(Lg, /L,) = E[p] 9)

We have the following lemma
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Lemma 2.7. The extensions Lg, /K, and K /K, are disjoint

Proof. By lemma 2.3 the extensions L, /K, and K. /K, are disjoint. Therefore
we have that Gal(L, K /L,) & Gal(K/K,). We now show that L, K /L, and
Lg, /L, are disjoint. If they were not disjoint then Gal(Lg, /L,) would a have a
quotient of order p on which G, acts trivially. But Gal(Lg, /L,,) = E[p]” where
r = dimp, S, is a semisimple G,,-module (see [15] prop. 9.3). Therefore any quotient
of Gal(Lg, /L) is isomorphic to E[p]® for some s < r ([3] cor. 4.3) so Lg, /L, and
L, K /L, are indeed disjoint which completes the proof. O

We now assume that for some ng we have a finite subgroup S,,, C H'(K,,, E[p])
that is stable under Gal(K,,/Q). Then Lg, /Q is a finite Galois extension. Let
V = Gal(Ls,, /Ln,). Given a subset U of V' we define

Z(U) = {£ rational prime | £{ pN and Frob,(Ls, /Q) = [ru] for u € U}

Note that every ¢ € £(U) is a Kolyvagin prime. A suitably chosen integer
ng > 0 and a subgroup S,, will play an important role in our proofs of theorems
A and B.

Proposition 2.8. If U generates VT, then img\, with £ ranging over £ (U)
generate X,(E/K,,) !

Proof. Let s = (s,) € Xp(E/Kx) with s, € Sel,,(E/Ky). To prove the proposition,
it suffices to show that res;(s) = 0 for all £ € Z(U) implies s = 0 i.e. we must
show for any n that res,(s,) = 0 implies that s,, = 0. Of course it suffices to show
this for all n > ng.

Let n > ng. By the previous lemma the extensions Lg, /K, and K,,/K,, are
disjoint. Therefore, V;, := Gal(Ls, Kn/Ln) may be identified via restriction with
V = Gal(Ls,, /Ln,). Let U, be the subset of V,, corresponding to U. Then U,
generates V.. Moreover, if { € £(U) with Froby(Ls, /Q) = [ru] with u € U, then
as £ is inert in K/Q and ¢ # p therefore ¢ splits completely in the anticyclotomic
Zp-extension Ko /K. This implies that Frob(Ls, K,/Q) = [ru'] where v’ is the
element of U, corresponding to wu.

We are now ready to prove the result. As above, we will show that res;(s,) =0
implies that s,, = 0. Without loss of generality we may assume that s, is in an
eigenspace for the action of 7.

By proposition 2.6 the restriction map induces an isomorphism

ves : H'(K,,, Elp]) < H'(Ly, E[p))% = Homg, (Gal(@/L..), Elp))

Using this isomorphism we identify s,, with its image in Homg, (Gal(Q/L,,), E[p])

Now choose a Galois extension M of Q containing Lg, K, such that: (i)
Gal(M/L,) is abelian and (ii) s,, factors through Gal(M/L,). Let x € Gal(M/L,,)
be such that $|Lsn0 k, € U,. By the Chebotarev density theorem, we may find
¢ € Z(U) such that Frob,(M/Q) = [rx].

That fact that res¢(s,) = 0 means that s, (Froby(M/L,)) = 0 for all primes A
of L, above ¢. Since Froby(M/Q) = [rz] therefore for any prime A of L,, above £
we have Froby(M/L,) = (72)? = 27z = (¢7)? and hence s, (z7) = 0.

Since U,! generates V| therefore the homomorphism vanishes on Gal(M/L,,)*
and hence as s,, is in an eigenspace for the action of 7 this implies that the image of
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Sy, 1s contained in a T-eigenspace of E[p]. In particular, it is a proper G,-submodule
of E[p]. Hence it is trivial since G,, = GLo(F,). Therefore s,, = 0. O

The following proposition will be an important tool to finding relations in
Xp(E/Koo)dual

Proposition 2.9. For any n, if s € Sel,(E/K,) and v € H (K., E)[p], then

Z(rcs@ s, respyye =0
¢
where the sum is taken over all the rational primes

The proposition is an immediate consequence of the global reciprocity law for
elements in the Brauer group of K, ([19] th. 8.1.17), taking into account the
definition of local Tate duality (loc. cit. th. 7.2.6).

We now define Yy (E/Koo) = lim T}, Sel oo (E/Kox)'' where the inverse limit is
taken over n with respect to the norm maps

The restriction maps res : Sel,« (E/K,) — Sely~(F /Ky )" induce a map

Z: Xy (E/Koo) = Yoo (E/Koo)

In the final part of this section, we will prove an Iwasawa-theoretic control theorem
which determines the A-rank of the kernel and cokernel of this restriction map. As
explained in the introduction, this control theorem will allow us to deduce the value
of A-corank of Sel,~(E/Ko) from the value of the A-rank of X, (E/K)

Theorem 2.10. Consider the map = induced by restriction

2 Xpoo (E/Koo) = Yoo (E/Koo)

(a) If E has good ordinary reduction at p, then E is an isomorphism

(b) If E has good supersingular reduction at p and p splits in K/Q, then = is an
injection and rankp (coker Z) < 2

Proof. First we prove part (a): Assume that E has good ordinary reduction at
p. From Mazur’s control theorem ([17]; see also [13] and [14]) using the fact that
E(Kx)[p™] = {0} (corollary 2.4) we get that for any n the restriction map

res,, : Sely (E/K,) — Selyee (E/ Koo)'

is an injection with finite cokernel. Part (a) then follows from this by taking Tate
modules and then inverse limits over n.

Now we prove part (b): Assume that F has good supersingular reduction at p
and p splits in K/Q. Define S = {p} U {l prime : [[N}. For any n, with this set
S, we define S,, to be the set of primes of K, above those in S and S, to be the
primes of K, above those in S. Now define Kg to be the maximal extension of
K unramified outside S, Gg(K,) = Gal(Kg/K,) and Gg(K~) = Gal(Kg/Kx).
Note that since we have assumed all the primes dividing N to split in K/Q therefore
it follows from theorem 2 of [5] that the set S is finite.
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For any K,, and any m it is well-konown that the p™-Selmer group Sel,~ (E/K,,)
may be defined as

0 — Selyn (E/K,) — H'(Gs(Kn), Ep™)) — [] H(Knw E)p™]
vESy

We may also define Sel,m (E/K) as

0 — Selym (E/Koo) — H'(Gs(Kw), EP™]) — [] H'(KeowE)[p™]

VES

For any n and m consider the following commutative diagram:

0 —— Selym (E/ Koo)' —— HY (Gs(Kx), E[p™])F" &» @D HY (K., B)[p"])"

VESs
}n,m Wh [gn,m

Yn,m
0 — Sel,m (E/K,) —— HY(Gs(K,),Ep"]) ———— @ H (K., E)[p™)
vES,
(10)
The vertical maps in the above diagram are restriction. Let us note a few things
related to this diagram:

(1) The maps hy,, are isomorphisms: This follows from the fact that
HY (T, BE(Kx)[p™]) and H?*([,,E(Kx)[p™]) are both trivial because
E(K)[p™] = {0} (corollary 2.4).

(2) For any v € Ss above p we have H' (K, ,, E)[p™] = {0}: This is equivalent
to E(Keow) ® Qp/Zy = H (Ko v, E[p™]) with the map being the usual one from
the Kummer sequence. The result follows from [8] cor. 3.2 as explained in [13] pg.
70. Note that the fact that F has supersingular reduction at p is crucial for this
result.

(3) For any v € S, not dividing p we have that H'(K, ., F)[p™] is finite:
This follows from 2 facts. First, by Tate duality for abelian varieties over local
fields ([18] cor. 3.4) we have that H'(K, ,, E)[p>] is isomorphic to the dual
of @E(an)/p". Secondly, if I is the rational prime lying below v, then by
Mattuck’s theorems we have that F (K, ,) = Z{ x T where d = [K,, : Q] and T
is a finite group. Therefore it follows from these 2 facts that H'(K, ,, E)[p™] is
the (finite) p-primary subgroup of E(K, ,).

(4) Let py and ps be the primes of K above p. Since we have assumed that the
class number of K is relatively prime to p, therefore both p; and po are totally
ramified in Ko /K. So in particular there are only 2 primes p,, 1 and p, o of K,
above p and 2 primes po,1 and P2 of K above p.
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(5) For any n and m we have isomorphisms H!(K,,E[p™]) =
HY(K,,E[p>®])p™] and Sel,m(E/K,) = Sel,~(E/K,)[p™]. A similar ob-
servation applies to these groups over K.: This follows from corollary 2.4/

Let Soo = Soo\{Poo.1;Pec.2} (see (4)). Taking the points (2)-(5) into considera-
tion, we take the inverse limit of the objects in the diagram above over m (using
the multiplication by p map) and then over n (using the corestriction map for the
bottom row and the norm map for the top row) to obtain the following diagram

0 Yy (B/Koo) —— Im T, H (s (Koo, Elp™))T —2 @ i T, H (Ko o, E)[pT

0 —— Xp= (E/Koo) —— Im T, H (G5 (Ky), E[p™]) ——— @

(11)
To ease the notation, in the above diagram we have denoted K, ;,, by Ky, ;.
Applying the snake lemma to this diagram we get

0 — kerZ — ker =/ — ker 2 Nimg1p — coker = — coker =’

From point (1) above, it follows that Z' is an isomorphim i.e. kerZ = 0 and

coker &' = 0. Therefore from the above sequence we get that ker = = 0 as required.
We also get that coker 2 = ker 2’ N img1. But E” is the zero map so coker = =
img1. Therefore we must show that rank, (img1) < 2. To study img1 we use the
Cassels-Poitou-Tate exact sequence (see [9]) which gives that the following sequence

is exact

HY(Gs(K,), Ep™) 22 @ H (Ko, E)p™] 222 Selym (E/K,) ™
vES),

Taking the points (3)-(5) above into consideration, we take the inverse limits
of the groups over m (using the multiplication by p map) and then over n (using
the corestriction map). As the all the groups we are dealing with are compact
Hausdorff, the resulting sequence is also exact:

lim T, H (G (K), Elp™]) 5 @) Iim T, H (K, ., B)[p] 2 Sely (B /Koo )™
i=1,2
The fact that this sequence is exact means that imgip = ker 8. So to show tpat
rank (img 1) < 2 it suffices to show that ranky (ker 0) < 2 or equivalently, if 0 is
the dual map, that coranky (coker ) < 2.
By Tate local duality the dual of H'(K,, ,, E)[p™] may be identified with

E(Ky, ,)/p™. Therefore using this fact, the map 0 becomes
8+ Sely (B/Koo) = E(Kp..,,) © Qp/Zyp X B(Kp..,) @ Qp/2,

This map is the usual map induced by restriction
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HY (Koo, Ep™]) = P H' (Kp.. .. EP™])

i=1,2

Note that if ¢ € Sely~ (F/Ks) C H' (Ko, E[p™]) then its image under this map
belongs to E(K,_ ) ® Qy/Z, x E(K,_ ,) ® Qy/Zy.

To prove our result we will first calculate coranks(E(K,_ ;) ® Qp/Zy). First
we show that E(Kpe)[p™] = {0}. Since I' = Gal(K,_ ,/Q,) is pro-p it suffices
to show that E(Q,)[p™] = E(K,_ ,)[p™]" = {0}. But since E has supersingular
reduction at p, we have E(Q,)[p>] = E (pZ,)[p™°] where E is the formal group of
E/Q,. The result then follows from the fact ([22] ch. 4 th. 6.1) that E(pZ,) has
no p-torsion if p > 3.

Since E(K,_ ,)[p>] = {0}, therefore, as in point (1) above, the restriction map
induces an isomorphism H'(K,, ,, E[p™]) = H'(K,_,,Ep>=])'. In addition,
we know that ([14] ch.2) coranky (H'(K,, ., E[p™])) = 2p". Therefore it follows
that coranka (H'(K,_ ,, E[p>])) = 2. But by point (2) above E(K,_ ,)®Q,/Z, is
isomorphic to H'(K,__ ,, E[p™]) so we also have corank (E(K,__,) ® Qp/Zy,) = 2.

We have now shown that

corankp (E(Kyp.. ) @ Qp/Zy x E(Ky, ,) ® Qp/Zp) = 4

Therefore to show that coranky (coker é) < 2 we only need to show that
coranky (img 8) > 2.This follows from a result of Ciperiani ([6] prop. 2.1): Consider
the subgroup E(Ko) ® Qp/Z, C Selp(E/Ko). Ciperiani shows that the image
of the map (induced by restriction)

E(Ky) ®Q,/Z, — E(Ky,) ®Qp/Z, i=1,2

has A-corank greater than or equal to two. This implies the result.

This control theorem implies the following key result

Theorem 2.11. Both Sel,=(E/Ks) " and X, (E/Kw) are finitely generated
A-modules

(a) If E has good ordinary reduction at p, then X, (E/K) is a free A-module
and coranky (Sely (E/ K )) = rankp (Xpe (E/Ks))

(b) If E has good supersingular reduction at p and p splits in K/Q, then
coranky (Selyes (E/K o)) < ranka (Xpe (E/Kx)) + 2

Proof. Sely(E/Ko) 4% is a fintely generated A-module by [16] th. 4.5. Therefore
by [19] prop. 5.5.10 we have that Y, (E/K,) is a finitely generated free A-module
with the same rank as Sely (E/K.,) 42!,

The control theorem above gives in both the ordinary and supersingular case
an injection Xpoo (E/Ko) < Ypoo (E/Ks). Therefore Xpe (E/K) is a finitely
generated A-module. The other statements now follow from the control theorem.

(]
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3. PROOF OoF THEOREM A

In this section we prove theorem A. We assume throughout this section the
assumptions for theorem A in section 2.1. Let w : Xo(N) — E be the modu-
lar parametrization of section 2.2 and let . : Jo(IN) — E be the corresponding
covariant map. Before beginning the proof of theorem A we note that to prove
theorem A we many assume that ker(r,) is geometrically connected, for E is Q-
isogenous to a strong Weil curve E’ having a modular parametrization with this
property. Since E is isogenous to E’, therefore if E satisfies the conditions of
theorem A so does E’. Moreover let f : E — E’ and g : E/ — E be a Q-
isogeny and its dual. Then fog = m and g o f = m for some integer m.
The isogenies f and g induce maps g : Selpe (E/Koo)M® — Selye (E' /Ko )du2!
and f : Selye(E'/Ko)® — Sel,w (E/Ko )" whose composites are multi-
plication by m. From this we get that ker f is annihilated by m and therefore
coranky (Sely= (E'/Ko)) < coranka(Sely~(E/Ks)). We get the reverse inequal-
ity from the map g and therefore we get equality. Similarly one can show that
ranka (Xpe (E/Ks)) = ranky (Xpee (E'/Ko)). This shows that we may (and will)
indeed assume that ker(r,) is geometrically connected.

Recall from section 2.2 that we have R, o, C Ry y100,41. This allows us to take
the direct limit lim Ryay, C E(K~)/p. We begin this section with the following
important theorem

Theorem 3.1. As a A-module (hgl R, )4

Proof. Tt is well-known (see for example [16] th. 4.5) that Sel,=(E/Kq )" is a
finitely generated A-module. Since E(K)[p*°] = {0} by corollary 2.4 therefore we
have an isomorphism Sel,(E/Ks) = Sely~ (E/Kx)[p] and so Sel,(E/Ky ) is
a finitely generated A-module. The same then holds for (hg Ry, (since it is
a quotient of Sel,(E /Ky )d2).

We now prove that (hg R,a,)%" is not A-torsion. Since finitely generated

is finitely generated and not torsion

torsion A-modules are finite, we just have to show that lim R,q, is an infinite
dimensional F,-vector space. Our result follows from a theorem of Cornut ([10]
th. B). Cornut defines a certain subgroup subgroup M C @Rnan. His theorem
states that if p is a prime not dividing ¢(Ndk) nor the number of geoemetrically
connected components of ker(7,) then dimg, M is infinite (which then implies that
dimg, lim Ry, ap s infinite). Since ker(w,) is geometrically connected we get the
desired result.

O

We would now like to show that there exists a Kolyvagin prime ¢; such that
limresy, Ry, has nontrivial A-corank. To do this, we use the technique in [7].
The above theorem implies that there exists a nonzero map

¢ Adual lim Ry, v,

Since ¢™ — ¢ and ¢” + ¢ cannot be zero simultaneously, we can assume that ¢ lies in
one of the eigenspaces for the action of complex multiplication 7. Since (img ¢)dua!
injects into A, it is free of rank 1 over A. It follows that dimp,, (img ¢t = 1. Also
since img ¢ is T-invariant and T7gT = g~ for any g € I we get that (img¢)! is also
T-invariant.
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Now let s € (img¢)" — {0}. Then s is an eigenvector for the action of 7 on
lim Ry, a,. Since E(Kx)[p>] = {0} (corollary 2.4) therefore the restriction map is
an isomorphism

H' (K, Elp]) = H'(Kx, E[p)"

This implies that s € H!(K, E[p]). Now let T' be the subgroup generated by s
in H'(K, E[p]). With the notation following proposition 2.6 we have an extension
L1 /Q which is Galois over Q since T is 7-invariant. Now let H = Gal(Ly/L) =
Elp] (see [15] prop. 9.3) and choose h € H such that (7h)? € HT — {0}. We
now choose an auxilary prime ¢; such that ¢; is relatively prime to pNdx and
Froby, (L7/Q) = [Th] (such a prime exists by the Chebotarev density theorem).

We now claim that res,, s # 0. To prove this we only have to note that ¢; is
inert in K/Q and hence Froby, (Lt/K) = [(Th)?]. Since (7h)? is nonzero, the fact
that resp, s # 0 follows easily from the non-degeneracy of the pairing (9). From
this we get the following proposition.

Proposition 3.2. As a A-module (hﬂ Rycn (1))l s finitely generated and not
torsion

Proof. To prove that (lim Rycy, (¢1))4ual is a finitely generated A-module we cannot
argue as in theorem 3.1 because lim R, c,(¢1) does not belong to Sel,(E/K).
However it does belong to a ”generalized” Selmer group which we will now define.

If L/Q is an algebraic extension and T is any set of primes of L we define
SelZ(E /L) by the exact sequence

0 — Sel, (E/L) — H'(L, E[p]) — [[ H'(L., E)lp
vgT

We also define Selg& (FE/L) in a similar fashion. Now let T" be the set of primes
of K that lie above £;. Then by property (2) of the Kolyvagin classes in section
2.2 we have that liancn (1) C SelZJ(E/KOO). We now modify the argument in
theorem 3.1: Manin ([16] th. 4.5) has shown that Selz;(x, (B/Ky)%#! is a finitely
generated A-module (he proves this for any set T'). Since E(K)[p>°] = {0} (by
corollary 2.4) therefore we have an isomorphism SelZ(E /Ks) = Selgoo (E/Kx)
and so SelZ(E /Koo )dual is a finitely generated A-module. Then the same holds for
(hgl R,c,(f1))dual (since it is a quotient of Selg(E/Koo)dual).

We now prove that (h_r}n R,c,,(£1))42! is not a torsion A-module. Recall that we
have a nonzero map

¢ Adual liy Ry, vy

We have chosen s € img ¢ and chosen the prime ¢; so that res;, s # 0. Now consider
the restriction map

P @Rnan — liﬂreSZ1 R,ay,

Since we have resy, s # 0 therefore img(¢) o ¢) # 0 and since A 4! surjects onto
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img(v) o ¢) therefore img (1) o $)"¥! is a nonzero submodule of A and hence free of
rank 1 over A. It follows that limres,, R,q, is not A-cotorsion.

Since @Rncn(ﬁl) surjects onto liﬂRndn(ﬁl) and since by property (3) of the
Kolyvagin classes we have an isomorphism H_I)nI‘eSel R,d,(l1) = li_r>nresg1 R,a,
therefore liancn(él) surjects onto liﬂreSg1 R,o,. It follows that liancn(él)
is not A-cotorsion since ligreSg1 R, o, is not A-cotorsion. O

The above proposition implies that there exists a nonzero map
¢ A = lim Ry, (01)

As with the map ¢ defined earlier we may assume that ¢’ lies in an eigenspace for
the action of complex multiplication 7. Now let s’ € (img ¢’)I' — {0}. Then s’ is an
eigenvector for the action of 7 on liancn (41).

We now have the following proposition

Proposition 3.3. s and s’ are linearly independent over F,,

Proof. s € Ry, for some n and s’ € Rpcp(¢y) for some m. We may as-
sume that n = m. To ease the notation we will denote H'((K,[¢1])e,, E[p]) by
H' (K, [01], B[p))

Now let ¢ be the composition of the restriction maps

o HY (K, Elp)) = H' (Ko, Elp)) = H' (Kn e, [(2], Elp])

We claim that 1(s) # 0. Counsider the field Ly defined before proposition 3.2 and
let A be a prime of K[¢1] Ly above ¢;. Tt is not difficult to see that to show ¥(s) # 0
we only need to prove that the completions of the extensions Ly /L and LK[¢;]/L
at A are disjoint. We know that K[¢1]/K][1] is totally ramified at any prime at any
prime above ¢;. Since ¢; does not divide Np it is therefore unramified in L/Q.
It follows that LK[¢;]/LK][1] is totally ramified at primes above ¢;. Since Ly/L
is unramified at primes above ¢; therefore to show that the completions of the
extensions Ly /L and LK[¢1]/L at A are disjoint we only need to show that the
completions of LK[1]/L and Ly /L are disjoint. But this follows from the fact that
Gal(Lr/L) = E[p] (see [15] prop. 9.3) and that the class number of K is prime to
.

If ¥(s’) = 0 then s and s’ must be linearly independent. So now we con-
sider the case where 9(s’) # 0. We have s’ = rc,(¢1) for some r € R,.
Since 9(s") # 0 therefore from the commutative diagram (3) in section 2.2 we
get that Dy, (resy, (TI“K"[H/K”T&”(&)) = resy, (TI'K,L[1]/K,,LD€17’OZ7L(€1)) # 0 and so
resg, (Trg, y/k, 7on(€1)) # 0.(Note that the fields K,, and K[¢;] are linearly dis-
joint over K. Therefore Gal(K,[¢1]/K) = Gal(K,/K) x Gal(K[¢;]/K) and so
rag, (1) makes sense).

For any prime A of K, [¢1] we will denote the residue field by K. Now define
E(Xy,)/p = EBAMlEN'(K)\)/p where E is the reduced elliptic curve and the sum is
taken over all primes A dividing ¢,

With this notation we let redy, : E(K,[01])/p — E(Kg)/p be the re-
duction map and we let Tes,, : E(K,[l1])/p — E(Ky,)/p be the composition
resy, = redy, oresy,.
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It follows from proposition 2.2 that we have
resy, (TrKn[l]/Knran(El)) = Froby, Tesy, (TrKn[l]/Knran(l)) = Froby, Tesy, (ray,)

Since ¢1 # p therefore multiplication by p is an isomorphism on the formal group
of E(K, \[¢1]) for any A above £1 (K, x[¢1] denotes the completion of K, [¢1] at
A). From this it follows that the map redy, is an isomorphism and since we
have shown earlier that resy, (Trg, 11)/k,70n(f1)) # O therefore it follows that
tese, (Trg, 1)/ K, rn(f1)) # 0 and hence from what we deduced above we get
eS¢, (rag,) # 0. We conclude that resy, (row,) # 0.

Using property (3) of the Kolyvagin classes in section 2.2, it follows from this
that resy, (rdn(¢1)) # 0 and so rd, (¢1) # 0. Now consider the exact sequence

0— E(K,)/p— H (K,,E[p|)) & HY(K,,E)[p] = 0

If ¢ is the above map then p(s') = rd,(¢1) # 0. But s € E(K,)/p so from the
above exact sequence we get that ¢(s) = 0. This proves that s and s’ are linearly
independent. (]

We are now ready to define the subgroup S,,, C H!(K,,, E[p]) and the set U in
section 2.3. We consider 2 cases:

Case 1. s and s’ lie in different eigenspaces for the action of complex conjugation 7
In this case if 7s = € s where € € {+1,—1} then 78’ = —e s’. Note that s and s’

are linearly independent over F,. Since E (K )[p>] = {0} by corollary 2.4 therefore
the restriction map is an isomorphism:

H' (K, Blp]) = H'(Kw, E[p)"

Since s and s’ are both I-invariant therefore they belong to H' (K, E[p]). Now let
S be the subgroup of H!(K, E[p]) generated by s and s’. We now let ng = 0 and
Spy = S. Let V = Gal(Ls/L) where L = K(E[p]). We will denote Ly s} and
Lir,sy by Ls and Ly respectively. By [15] prop. 9.3 we have

V = Gal(Ls/L) x Gal(Ly /L) = E[p] x E[p]
Complex conjugation 7 acts on V' by
T(z,y)T = (e Tw, —€TY)

Let E[p]¢ denote the submodule of E[p] on which 7 acts as e. We now define a
subset U of V as

U={(z,y) |z c Elp]° - {0} and y € Elp]™* - {0}}
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It is clear that U™ generates V.
Case 2. s and s’ lie in the same eigenspace for the action of complex conjugation 7

In this case we have 7s = es and 78’ = € s’ for some € € {+1,—1}. Following [7]
we now consider the I-invariants of img ¢/(s) and img ¢'/(s’). The map ¢ induces
a surjection:

¢ A img ¢/(s)

Therefore (img ¢/(s)) 444! is a nonzero submodule of A and so is free of rank 1 over
A. Tt follows that the I-invariants of img ¢/(s) is a 1-dimensional F,-vector space.
Moreover, since T acts on img ¢/(s) and 7gr = g~ for any g € T it follows that
the T-invariants of img ¢/ (s) are 7-invariant.

Now choose e € img ¢ such that e + (s) € (img¢/(s))" —{0}. Then e+ (s) is an
eigenvector for the action of 7 on img ¢/(s). So 7e = €’e+xs for some ¢’ € {+1,—1}
and z € F),. As in [7], we will now show that ¢ = —e. We have

e=¢cret+ars=ec+ers+exrs=c+ (€ +e)us

Therefore ¢ = —e if  # 0. So we still need to consider the case where e = €'e.
Here we use the fact that if g is topological generator of I" then (g — 1)e = ys for
some nonzero y € F,. We have

T(g—Ve= (97" —1)de=—g (g —1)e] = —'g ys = —'ys

On the other hand 7(9 — 1)e = yTs = eys so € = —e.

Now consider ¢/ =e — ¢ %xs. ‘We have

1 1
T = Te — €52TS = —ece+xs — (6)251175 =—ce+ 5%s = —e(e — eixs) = —ce

Therefore replacing e with ¢/ we have 7e = —ee

To summarize, there exists e € img ¢ such that e + (s) € (img¢/(s))" — {0} and
Te = —ee. Similarly there exists €/ € img ¢’ such that ¢/ +(s’) € (img¢’/(s'))" —{0}
and ¢’ = —ee'.

We now show that s,s’,e and e’ are linearly independent over F,. We will use
the fact that s and s’ are T-invariant and that (g — 1)e = ys and (g — 1)’ = y's’
for some nonzero y,y’ € F,. Now suppose that

k15 + ]{125/ + kge + k46/ =0
For some k; € F),. Multiplying both sides by g — 1 yields
ksys + kyy's' =0

and therefore k3 = k4 = 0 by proposition 3.3. So we have
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kis + kgs/ =0

So using proposition 3.3 again gives k1 = ko =0

Now choose n € N such that s,s’,e and ¢’ all belong to H'(K,,, E[p]) and let S
be the subgroup of H(K,, E[p]) generated by s,s’,e and e’. Then dimg, S = 4.
Note that S is stable under Gal(K,/Q). Now let ng = n and S,, = S. Let
V = Gal(Ls/L) where L = K, (E[p]). We will denote Lr s} by L and similarly
for s’,e and ¢’. Since dimg, S = 4 therefore by [15] prop. 9.3 we have

V = Gal(Ls/L) x Gal(Ly /L) x Gal(L./L) x Gal(L. /L) = E[p)*
Complex conjugation 7 acts on V' by
(2, y, 2, w)T = (eTX, €TY, —€TZ, —€TW)

Let E[p]® denote the submodule of E[p] on which 7 acts as e. We now define

Uy ={(z,0,0,2) | z € E[p]* — {0} and z € E[p|¢ — {0}}

and
Uz ={(0,y,w,0) | y € E[p|]° — {0} and w € E[p|"* — {0}}

Finally we let
U=U,UU,
It is clear that U™ generates V.

For any ¢ € £(U) we consider ligres@ R, o, and ligresz R,c,(¢1). We have the
following key proposition

Proposition 3.4. For any ¢ € ZL(U) the submodules ligreSZRnan and
ligresz R,c,(l1) of ligE(ng)/p each have A-corank greater or equal to 1 and

together they generate a submodule of A-corank equal to 2

Proof. Consider the nonzero maps we defined earlier
¢ Adual ling Roycv,
¢ - Adual liancn(fl)
For any ¢ € Z(U) let

Py lianan — lii>nre55 R,ay,

Py lim Ry e, (£1) — limres, Ry cn(f1)
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be the restriction maps. Then for any ¢ € Z(U) we define ¢, = 1, o ¢ and
¢, = 1, o ¢'. Our definition of the set U shows that for any ¢ € £ (U) there exist
a € img¢ and B € img¢’ such that ¥,(a) # 0 and ¢;(8) # 0. This shows that
img ¢y # 0 and img ¢} # 0. Since A 4"2! surjects onto img ¢, and img ¢). Therefore
both @d“al and 5} dual are nonzero submodules of A and so are free of rank 1 over
A. This shows that both @resz R, and ligreSg R, c,(¢1) are not A-cotorsion.

To show that the A-corank of hﬂrew Ry, + ligres@ R, ¢, (1) is equal to 2, it
suffices to prove that img ¢, +img ¢}, has A-corank equal to 2, for then this implies
that liglrew R,o,, + hgnrew R,cn(¢1) has A-corank greater or equal to 2. But by
the isomorphism in property (3) of the Kolyvagin classes in section 2.2 together
with proposition 2.5 we have that the A-corank of ligE(ng)/p is equal to 2 so
we get equality.

We will show that img ¢, + img ¢} has A-corank equal to 2. To show this we
only need to show that dimg, (img ¢¢ + img¢})" = 2. To see this we note that the
maps ¢, and c% induce a surjection

(A& A) M — img ¢ + img ¢

Therefore (img ¢y + img ¢}) 42! is a nonzero submodule of A & A and hence free of
rank 1 or 2 over A. Since dimp, (img ¢¢ + img ¢))"" = 2 therefore we must have that
(img ¢ + img ¢}) 48! has A-rank equal to 2.

We now show that dimg, (img b¢ + img @})" = 2. Recall that we have chosen
s € (img @)l — {0} and s’ € (img¢')' — {0}. In case 1 s and s’ belong to different
eigenspaces for the action of complex conjugation 7. Our definition of the set U in
this case gives that for any ¢ € .Z(U) we have resy(s) # 0 and resg(s’) # 0. Also
since s and s’ are I'-invariant and belong to different eigenspaces for the action of
7, the same will be true for resy(s) and resy(s’). Therefore we get the desired result
in this case.

Now we consider case 2 where s and s’ belong to the same eigenspace for the
action of 7. In this case we have chosen elements e and e’ such that e + (s) €
(img ¢/ (s))F, ' + (s) € (img¢'/(s))' and e and €’ are eigenvectors for the action
of 7 belonging to a different eigenspace from s and s’. We have in this case defined
our set U to be the union of 2 sets U; and U,. Suppose that ¢ belongs to £ (Uy).
The definition of the set U; shows that resy(s) # 0, resg(e’) # 0 and resy(s’) = 0.
Since res;(s’) = 0 therefore resy(e’) is I'-invariant. Then we get the desired result
because s and ¢’ belong to different eigenspaces for the action of 7. We get a similar
situation if ¢ belongs to £ (Us) thereby completing the proof. (]

Corollary 3.5. For any { € ZL(U) the submodules lim res R,d,(¢) and
lim res, R,d,(¢l1) of @Hl(ng,E)[p] each have A-corank greater or equal to 1
and together they generate hﬂHl(ng, E)[p]

Proof. Using property (3) of the Kolyvagin classes in section 2.2, it follows from
the previous proposition that both ligreSg R,d,(¢) and ligrlreSg R,d,(¢41) have
A-corank greater or equal to 1 and that together they generate a submodule of
ligH YKy, E)p] of A-corank equal to 2. This submodule must be equal to
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liy /' (K¢, E)[p] since by proposition 2.5 H' (K, E)[p] is a cofree A-module
of rank 2. O

Proposition 3.6. For any ¢ € £ (U), img\, is a cofree A-module and imgp, =
ll)g(ligﬂreSg Rndn(éél))

Proof. The fact that imgy(f) is a cofree A-module follows from the fact that
@Hl(Kn7g,E)[p} is cofree (proposition 2.5). As for the fact that imgy, =
ﬂ)g(@ resy R,d,(¢41)), it follows from corollary 3.5 together with the fact that
by proposition 2.9 and property (2) of the Kolyvagin classes in section 2.2 we get
that wg(hén resg R,d,(£)) = 0. O

Proposition 3.7. We have rank; (X,(E/K)) <1

Proof. According to proposition 2.8 img, with ¢ ranging over £ (U) generate
X, (E/Ko)dual. Write . as a disjoint union ¢ = £ U% where &4 (resp.
%) consists of the primes ¢ € £ such that wg(hgrese R,.d,(£4y)) is zero (resp.
nonzero).

If % is empty, then X, (E/Ky) = {0}. Otherwise assume that %, is nonempty.
We will now show that rank;(X,(E/Kx)) = 1.

Recall that ¢; was chosen so that corankx(h'gnrew1 R,a,) > 1. There-
fore by property (3) of the Kolyvagin classes in section 2.2 we have
corank/f\(lig1resg1 R,d,(¢1)) > 1. Just as in the previous proposition we have
that ll)zgl(ligreslg1 R,d,(¢1)) = 0 and that imgy,, is a cofree A-module. Since
corankx(ligq resy, Rpd,(¢1)) > 1 therefore taking proposition 2.5 into account it
follows that img1y, is a cofree A-module of rank less than or equal to 1.

Now assume that £ € % and «a € liﬂRndn(Ml). Then using proposition 2.9
together with property (2) of the Kolyvagin classes in section 2.2 it follows that

Ye(rese(a)) + g, (resy, (o)) =0

So Py(resg()) € imgipy, and so by the previous proposition we get imgip, C
imgy,. Then using our earlier obervation that img1y,, is A-cofree of rank less
than or equal to 1 together with the facts that img1, is nonzero and cofree as a
A-module (from the previous propostion) it follows that imgp, = imgi,,. Our
desired result then follows from this. |

We can now finally prove theorem A

Theorem A. Assume that E has good ordinary reduction at p, then Sel,y (E/Kx)
has A-corank equal to 1 and Xpe(E/Ko) is a free A-module of rank 1.

Proof. From theorem 2.11 together with the previous proposition we get that
Selyx (B/Ko) 912 is a finitely generated A-module, X (E/K) is a finitely gen-
erated free A-module and X,(E/K) is a finitely generated free A-module with

coranky (Selpee (E/K o)) = ranka (Xpe (E/ K )) = ranky (Xp(E/Kx)) < 1

Therefore the theorem will follow if we can show that coranky (Sel,e (E/Ko)) > 1.
We now show this as follows: using theorem 1.4 of [23] together with the main result
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of 2] it follows that rank(FE(K,)) = p" 4+ O(1) and therefore corankz (E(K,)®
Qp/Z,) = p™ + O(1). This implies that coranks(F(K) ® Qp/Z,) > 1 and
since E(Ko) ® Qp/Z, is contained in Sely,e(E/Ko) it therefore follows that
coranky (Sel,e< (E/K o)) > 1 as desired. O

4. PROOF OF THEOREM B

In this section we prove theorem B. We assume thoroughout this section the
assumptions for theorem B in section 2.1. Let E’ be a strong Weil curve that is
Q-isogenous to E. Since FE is isogenous to E’, therefore if E satisfies the conditions
of theorem B so does E’. Moreover let f : E — E' and g : E/ — E be a Q-
isogeny and its dual. Then fog = m and g o f = m for some integer m. The
isogenies f and g induce maps g : Selyec (E/Koo)®® — Selyoo (E' /Koo)' and
[ Selpee (B /Koo) — Sely (E/ Koo ) whose composites are multiplication
by m. By the same argument in the beginning of section 3, using the maps f and
g, we see that coranka (Selpe (E'/K)) = coranky (Selye (E/Kx))-

The isogenies f and g also induce maps f : X, (E/Ky) — Xpe (E'/Ks) and
G Xpe(E'/Ks) = Xpo(E/Ks) whose composites are multiplication by m. From
this we see that ker f is annihilated by m. Now assume that X, (E’/K) = {0}.
Then we have X, (E/Ko) = ker f is annihilated by m. But by theorem 2.10
we have an injection Xpe (E/Ko) < Ypo (E/Ks) where YV,o (E/K o) is a free
A-module and so it follows that X, (E/K.) is torsion-free. Therefore we must
have Xpe (E/Ko) = {0}. This shows that we may (and will) assume that F is a
strong Weil curve such that the map 7. : Jo(N) — E coming from the modular
parametrization 7 : Xo(N) — FE has a geometrically connected kernel.

Recall from section 2.2 that we have R, a,, C Ry, i204,42 for any n. This allows
us to construct the direct limits li_n>1R2na2n and @R%Hagnﬂ. We recall the
following conjecture from the introduction

Conjecture. If p splits in K/Q and E has good supersingular reduction at p thgn
the submodule of E(K)/p generated by H_I}nRgnOégn and h_n>1R2n+1a2n+1 has A-
corank greater than or equal to two.

We will now discuss some evidence for this conjecture. The main evidence comes
from the following theorem. See also the remarks after the theorem.

Theorem 4.1. The A-modules liglenagn and li_n)ngnHagnH are not cotorsion

dual are finitely gen-

Proof. The fact that (hg Ronaia,) 492 and (h_ng Ront109n4+1)
erated over A follows exactly as in theorem 3.1. Since finitely generated torsion
A-modules are finite, therefore to show that lim Ra, o, and H_I)nRgnHagnH are
not cotorsion we only have to show that these modules are infinite.

We will show this by the same method used to prove theorem B in Cornut’s
paper [10]. Using the same notation as in Cornut’s paper we let N denote the
conductor of E and we let M be the integer defined on page 517 of Cornut’s paper.
Recall from section 2.2 that K[p>] = U,>1K[p"]. Now let ¢ be a rational prime
not dividing 2N Mp that is inert in K/Q. Choose a place v, of K[p™] above £ and
let k(¢) denote its residue field, so that k(¢) = F,2. We have a reduction map at v,

redy - Xo(NM)(K[p™]) — Xo(NM)(k(£))
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As Cornut notes, red, maps any CM point (relative to K) to the supersingular
locus X§*(NM)(k(€)) of Xo(NM)(k(£)).

Now let £}, be the set defined on page 506 of Cornut’s paper. Using the
notation on page 517 of the paper we have for any a € ., a Heegner point
H'(a) € Xo(NM)(K[p>=]). Let c¢(a) denote the conductor of H'(a). We now
define the following subsets of Xo(NM)(K [p>])

Xt ={o(H'(a) | a € %, 0 € Gal(K[p>°]/K) and ord,(c(a)) =0 mod 2}

X~ ={o(H'(a)) | a €%, o€ Gal(K[p>*]|/K) and ord,(c(a)) =1 mod 2}

We also define X be the set of all Heegner points relative to K of p-power conductor.
Let K = K® Z and K® = K ® Z® where Z and Z® are the profinite and
“prime to p-adic” completions of Z. Denote the Artin reciprocity map as

~

[K[p™]/K,+] : K7 = Gal(K[p™]/K)

Now let S be a finite set of rational primes ¢ { 2N Mp which are inert in K/Q
and let R be a finite subset of Gal(K[p>]/K) consisting of elements that are pair-
wise distinct modulo [K[p™®]/K, K®*]. For any such sets S and R we define the
following map

v X = [ X655 (N M) (k(0)
les
a > (rede(0(@)))rer es

From Cornut’s proof of theorem B in his paper, we see that to obtain our desired
result we only have to show for any sets S and R as above that 9|x+ and ¥|x-
are surjective.

To show this last statement we use the work of Cornut and Vatsal [11] which is a
generalization of the work of Cornut [10] to CM points on Shimura curves. Taking
into account remark 4.16 of [12], we apply theorem 3.5 of [11] to the connected
Shimura curve Yo(N) = H/To(N) to obtain the following result: 9|r, is surjective
for all but finitely many = € X where T'e = {o(z) | o € T'}. It immediately follows
from this result that both ¥|x+ and 9|x- are surjective which as we noted above
imply, as desired, that both @Rgnagn and @R2n+1a2n+1 are not cotorsion as

A-modules. O

Remark. The main evidence in support of conjecture 1.1 comes from the above
theorem. If either lim Ry, a0, or lim Ro,419,+1 has A-corank greater than two
then the conjecture is true. Otherwise each of @Rznagn and @R2n+1a2n+1

has A-corank one and the conjecture in this case is equivalent to li_n>qR2na2n N
@RQHJ'_lOZQnJrl being A-torsion.
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Other evidence for this conjecture comes from the work of Ciperiani [6] which
we will now explain. We define R, = Z/p"Z|G,] and we let R, «, be the R -
submodule of H!(K,, E[p"]) generated by the image of «,, under the map

E(K,) — H' (K, E[p"])

As in section 2.2, using the natural transition maps one can show that R} a,, C
R} o042, This allows us to construct the direct limits lim Rf, g, and
th/zn+1Oén+2~ Ciperiani ([6] prop. 2.1; see also [7] lemma 2.6.5) shows that
the submodule of F(K) ® Q,/Z, generated by li_ngR’Qnagn and lignR’QnHagnH
has A-corank greater than or equal to two i.e. our conjecture is the “mod p” analog
of her result.

We now assume conjecture 1.1. Let M = hﬂ Rgnag,ﬁ—@ Ropt109,41. Since M
has A-corank greater or equal to two and A is a PID therefore M"#! is isomorphic
to A" ® T’ where r > 2 and T’ is a finite. It follows that M = F ® T where
F is cofree of rank r and T is finite. Since T is finite there exists an m € N
such that (g — 1)?"T = {0} where g is a topological generator of I' (note that
(g—1)P" =gP" —1 mod p). It follows that (g — 1)?" M C F but as (g — 1) M
has A-corank r and F is a cofree A-module of rank r, we therefore must have
F = (g—1)?" M. Since M is T-invariant therefore (g—1)?"" M is also T-invariant and
so I is 7-invaraint. Composing the isomorphism A" 4'® = F with the inclusion
F — M we have shown that there exists a map

¢: A" dual _, @Rznazn + lingnHOéQnH

such that img¢ is T-invariant and is cofree with A-corank r > 2. Therefore
dimg, (img¢)" = r > 2. Moreover as img¢ is 7-invariant and 797 = g~ for
any g € I therefore (img ¢)! is 7-invariant as well.

We are now ready to define the subgroup S,, € H(K,,, F[p]) and the set U
in section 2.3. Note that the endomorphism 7 of (img¢)' is diagonalizable. We
consider 2 cases:

Case 1. The endomorphism 7 of (img ¢)! has two eigenspaces

Choose s, s € (img¢)' such that 7s = s and 75’ = —s’. This case is similar to
case 1 in section 3. Since s and s’ are both I'-invariant therefore they belong to
H'(K, E[p]). Now let S be the subgroup of H'(K, E[p]) generated by s and s'. We

now let ng = 0 and S,, = S. Let V = Gal(Lg/L) where L = K(E[p]). We will
denote L, and Lg, oy by Ls and Ly respectively. As in section 3 we have

V = Gal(Ls/L) x Gal(Ly /L) = E[p] x E[p]
Complex conjugation 7 acts on V' by

T(z,y)T = (e Tw, —€TY)
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Let E[pl¢ denote the submodule of E[p] on which 7 acts as e € {+1,—1}. We now
define a subset U of V as

U={(z,y) |z € Elp]" — {0} and y € Elp]” — {0}}
It is clear that U™ generates V.
Case 2. The endomorphism 7 of (img ¢)" has one eigenspace

Choose 2 F,-linearly independent elements s, s’ € (img$)'. Then 7s = es and
78" = es’ for some € € {+1,—1}. This case is similar to case 2 of section 3. As in
that case we will consider the T-invariants of img ¢/(s) and img ¢ /(s

Since img ¢ is a cofree A-module of rank r therefore img ¢/(s) is also cofree
of rank r and so dimg, (img$/(s))" = r. Also observe that the endomorphism
T of (img@/(s))" is diagonalizable and dimg, ((img )" /(s)) = r — 1. Therefore
there exists an element e € img ¢ — (img ¢)! such that e + (s) € (img@/(s))! and
Te + (s) = €'e 4+ (s) for some ¢’ € {+1,—1}. As we showed in case 2 of section 3
we have ¢ = —e and that we may further assume that 7e = —ee. Similarly one can
show that there exists an element ¢/ € img ¢ — (img ¢)!' such that 7¢/ = —ee’ and
&'+ (s') € (img /().

Also just as we showed in section 3, we can show that s,s’, e and ¢’ are linearly
independent over IF),.

Now choose n € N such that s, s’, e and ¢’ all belong to H*(K,,, E[p]) and let S be
the subgroup of H'(K,, E[p]) generated by s, s’,e and e’. Then dimg, S = 4. Note
that S is stable under Gal(K,,/Q). Let ng = n and S,,, = S. Let V = Gal(Ls/L)
where L = K, (E[p]). We will denote Lg ) by Ls and similarly for s’,e and ¢'.
Since dimy, S = 4 therefore we have

V = Gal(L,/L) x Gal(Ly /L) x Gal(L./L) x Gal(L. /L) = E[p]*
Complex conjugation 7 acts on V' by
T(z,y, 2, w)T = (€TT,€TY, —€TZ, —€TW)
Let E[p]¢ denote the submodule of E[p] on which 7 acts as e. We now define
Uy ={(z,0,0,2) | z € E[p]* — {0} and 2z € E[p| ¢ — {0}}

and
Uz ={(0,y,w,0) | y € E[p|]° — {0} and w € E[p|~* — {0}}

Finally we let
U=U1UU,

It is clear that U™ generates V.
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Proposition 4.2. For any ¢ € ZL(U) the submodule ligreSgRgnozgn +
lim resy Ron4102n+1 ofligE(ng)/p has A-corank equal to 2

Proof. Consider the map we defined earlier
(b < AT dual — MR?nOQn + @Rmﬁ-lo@n-ﬁ-l

For any ¢ € Z(U) let

Yo 2 lim Rop gy, + 1im Ro 1 0on 41 — limresy Ropagy + limresy Rop 1 an 41

be the restriction map. Then for any ¢ € Z(U) we define ¢y = 1y 0 ¢ .

To show that the A-corank of ligreSg Ronao, + hﬂreSg Rop 100041 is equal to
2, it suffices to prove that img @, has A-corank equal to 2, for then this implies
that lim resy Ro,, (o, + limresy Ro, 1 100,11 has A-corank greater or equal to 2. But
by the isomorphism in property (3) of the Kolyvagin classes in section 2.2 together
with proposition 2.5 we have that the A-corank of ligE(ng)/p is equal to 2 so
we get equality.

We will show that img ¢, has A-corank equal to 2. To show this we only need
to show that dimp, (img #¢)F' = 2. To see this we note that the map ¢, induces a
surjection

T\r dual — 1mg (}g
Therefore (img ¢;) 48! is a nonzero submodule of A" and hence free of rank less
than or equal to r over A. But as dimp, (img é¢)' = 2 we therefore must have that
the rank is equal to 2.

We now show that dimg, (img ¢,)" = 2. In case 1 we have chosen s, s’ € (img ¢)"
such that s and s’ belong to different eigenspaces for the action of complex conjug-
ation 7. Our definition of the set U in this case gives that for any ¢ € Z(U) we
have resy(s) # 0 and res;(s’) # 0. Also since s and s’ are I'-invariant and belong
to different eigenspaces for the action of 7, the same will be true for resy(s) and
resg(s’). Therefore we get the desired result in this case.

Now we consider case 2. Here we have also chosen s, s’ € (img$)'. In this case
both s and s’ belong to the same eigenspace for the action of 7. We have chosen
elements e and e’ such that e + (s) € (img¢/(s))', ' + (s') € (img¢/(s'))' and e
and e’ are eigenvectors for the action of 7 belonging to a different eigenspace from
s and s’. We have in this case defined our set U to be the union of 2 sets U; and
Us. Suppose that ¢ belongs to £ (Uy). The definition of the set U; shows that
rese(s) # 0, resg(e’) # 0 and resg(s’) = 0. Since resy(s’) = 0 therefore resy(e’) is
I-invariant. Then we get the desired result because s and €’ belong to different
eigenspaces for the action of 7. We get a similar situation if ¢ belongs to £ (Us)
thereby completing the proof. [l

Corollary 4.3. For any ¢ € ZLU) we have liAlHl(ng,E)[p] =
hﬂreSz Rgndzn (f) + HAII"GS@ R2n+1d2n+1(£)
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Proof. Using property (3) of the Kolyvagin classes in section 2.2, it follows from the
previous proposition that ligres@ Rgndgn(g)Jrlig resy Ropt1dan+1(£) is a submodule
of lingl(ng,E)[p] of A-corank equal to 2. This submodule must be equal to

ling(ng, E)[p] since by proposition 2.5 H'(K, ¢, E)[p] is a cofree A-module of
rank 2. O

We can now finally prove theorem B

Theorem B. Assume that p splits in K/Q, E has good supersingular reduction
at p and conjecture 1.1 is true, then Selye(E/Ks) has A-corank equal to 2 and
Xp=(E/Ko) = {0}

Proof. For any ¢ € Z(U) using proposition 2.9 together with property (2)
of the Kolyvagin classes in section 2.2 it follows that 'Ll)g(ligreSg Rondan(€) +
ligresz Ront1Dan+1(¢)) = 0 and so from corollary 4.3 we get that imgp, = {0}.

Since according to proposition 2.8 imgi, with ¢ ranging over .£(U) gener-
ate X,(FE/Ky) 4! therefore we get that X,(F/Ky) = {0} which implies that
Xpe (E/Ks) = {0} by Nakayama’s lemma.

It then follows from theorem 2.11 that coranka (Selye (E/Ko)) < 2.

So the proof of theorem B will be complete if we can show that
coranky (Selyes (E/Ko)) > 2. This follows from theorem 1.7 of [13] (or altern-
atively one can use proposition 2.1 of [6]). O
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