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Abstract. Let E/Q be an elliptic curve, p a prime and K∞/K the anticyc-

lotomic Zp-extension of a quadratic imaginary field K satisfying the Heegner
hypothesis. Kolyvagin has shown under certain assumptions that if the basic

Heegner point yK ∈ E(K) is not divisible by p, then rank(E(K)) = 1 and
X(E/K)[p∞] = 0. Assuming that E has supersingular reduction at p and

other conditions, we show using Kolyvagin’s result and Iwasawa theory that

for all n we have rank(E(Kn)) = pn and X(E/Kn)[p∞] = 0

1. Introduction

Let K be an imaginary quadratic field with discriminant dK 6= −3,−4 and p be
a prime. Let K∞/K be the anticyclotomic Zp-extension of K, Γ = Gal(K∞/K)
and Kn the unique subfield of K∞ containing K such that Gal(Kn/K) ∼= Z/pnZ.
Denote Γn = Γp

n

and Gn = Γ/Γn.
Let E an elliptic curve of conductor N defined over Q with a modular paramet-

rization π : X0(N)→ E which maps the cusp ∞ of X0(N) to the origin of E (see
[17] and [1]).

Assume that every prime dividing N splits in K/Q. It follows that we can choose
an ideal N such that OK/N ∼= Z/NZ. Therefore the natural projection of complex
tori:

C/OK → C/N−1

is a cyclic N -isogeny, which corresponds to a point of x1 ∈ X0(N). The theory
of complex multiplication shows that x1 is rational over K1, the Hilbert class field
of K. Let y1 = π(x1) ∈ E(K1) and define the point yK = TrK1/K(y1) ∈ E(K).
Kolyvagin’s celebrated paper [10] proves that when yK has infinite order, then
E(K) has rank 1 and the Tate-Shafarevich group X(E/K) is finite.

In this paper, we work with a particular prime p and therefore are interested in
the following weaker result of Kolyvagin (see [6] prop. 2.1 and [12] thm. 6.7)

Theorem 1.1 (Kolyvagin). Let p be an odd prime such that E[p] is an irreducible
Gal(Q(E[p])/Q)-module and such that yK /∈ pE(K), then E(K) ⊗ Zp = Zp(yK ⊗
1) ∼= Zp and X(E/K)[p∞] = {0}.

The main theorem of this article can be thought of as an extension of the above
result of Kolyvagin to the tower fields of the anticyclotomic Zp-extension of K.
Before stating the result let us list the hypotheses we will work under.

Let p be a prime. We shall say that (E, p) satisfies (?) if the following are met:

(i) p splits in K/Q
(ii) Both primes of K above p are totally ramified in K∞/K
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(iii) p does not divide 6N ·
∏
`|N cv

(iv) E has supersingular reduction at p

In the above, cv is the Tamagawa number of E at the prime v and the product∏
`|N cv runs over all rational primes dividing N . Conditions (i) and (ii) above

will be imposed in order to invoke the results of Iovita and Pollack [7]. Note that
condition (ii) is satisfied in p does not divide the class number of K.

For any n and m we let Selpm(E/Kn) denote the pm-Selmer group of E over Kn

defined by

0 −→ Selpm(E/Kn) −→ H1(Kn, E[pm]) −→
∏
v

H1(Kn,v, E)[pm].

We also define the p∞-Selmer group of E over Kn as Selp∞(E/Kn) =
lim−→
m

Selpm(E/Kn).

Finally we define the pm-Selmer group and the p∞-Selmer group of E over K∞
as Selpm(E/K∞) = lim−→

n

Selpm(E/Kn) and Selp∞(E/K∞) = lim−→
n

Selp∞(E/Kn).

Let Λ = Zp[[Γ]] be the Iwasawa algebra attached to K∞/K. Fixing a topological
generator γ ∈ Γ allows us to identify Λ with the power series ring Zp[[T ]].

For any discrete torsion abelian group A we let Adual = Hom(A,Q/Z) denote its
Pontryagin dual. The main result of this article is the following theorem

Theorem 1.2. Assume that (E, p) satisfies (?) and yK /∈ pE(K). Then we have

(i) rank(E(Kn)) = pn for all n ≥ 0
(ii) X(E/Kn)[p∞] is trivial for n = 0 and finite for all n > 0

If furthermore for some prime p of K over p we have yK /∈ pE(Kp), then

(i) Selp∞(E/K∞)dual is a free Λ-module of rank two
(ii) X(E/Kn)[p∞] = 0 for all n ≥ 0.

This theorem may be viewed as the supersingular analog of theorem 4.9 of [12]
which was proven in the ordinary case. Unlike the latter theorem, we impose the
strong condition that yK /∈ pE(Kp) to get that X(E/Kn)[p∞] = 0 for all n. It is
unclear to the author whether X(E/Kn)[p∞] = 0 for all n without imposing this
condition. This theorem will be proven in section 4.

2. Some definitions and preliminary results

Beginning from this section till the end of the paper we assume that (E, p)
satisfies (?). We now introduce some notation and make some definitions. Let

Φn(X) =
∑p−1
i=0 X

ipn−1

be the pn-th cyclotomic polynomial and ωn(X) = (X +

1)p
n − 1. Also set

ω̃+
n =

∏
15m5n
m even

Φm(X + 1), ω̃−n =
∏

15m5n
m odd

Φm(X + 1), ω̃±0 = 1

ω+
n = X · ω̃+

n and ω−n = X · ω̃−n . Note that ωn = X · ω̃+
n · ω̃−n

For any n ≥ 0 we define

qn =

{
pn − pn−1 + pn−2 − pn−3 + · · ·+ p2 − p+ 1 if 2|n
pn − pn−1 + pn−2 − pn−3 + · · ·+ p− 1 + 1 if 2 - n
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qn is the degree of ω+
n or ω−n depending on whether n is even or odd, respectively.

Let p be a prime of Kn above p (note that since we are assuming that p splits
in K/Q and every prime of K above p is totally ramified in K∞/K, it follows that
there are two primes of Kn above p).

Following Kobayashi [9], we define the following subgroups of E(Kn,p)

E+(Kn,p) := {x ∈ E(Kn,p) | Trn/m+1(x) ∈ E(Km,p) for even m : 0 ≤ m < n}

E−(Kn,p) := {x ∈ E(Kn,p) | Trn/m+1(x) ∈ E(Km,p) for odd m : 0 ≤ m < n}.

Following Kobayashi [9] and Iovita-Pollack [7], we define

0 −→ Sel±p∞(E/Kn) −→ Selp∞(E/Kn) −→
∏
p|p

H1(Kn,p, E[p∞])

E±(Kn,p)⊗Qp/Zp

and Sel±p∞(E/K∞) = lim−→
n

Sel±p∞(E/Kn)

Note that the condition defining E±(Kp) is vacuous giving E±(Kp) = E(Kp)

and hence Sel±p∞(E/K) = Selp∞(E/K)
Finally, we define

0 −→ Sel1p∞(E/Kn) −→ Selp∞(E/Kn) −→
∏
p|p

H1(Kn,p, E[p∞])

E(Qp)⊗Qp/Zp

Remark. Let Ê be the formal group of E/Q. Then Ê(Kn,p) is isomorphic to

E1(Kn,p) = ker(E(Kn,p) → Ē(Fp)). We then define Ê±(Kn,p) ∼= E1(Kn,p) ∩
E±(Kn,p). Since E has supersingular reduction at p, therefore Ē(Fp)[p] = {0}. It

follows that we have an isomorphism Ê±(Kn,p) ⊗ Qp/Zp ∼= E±(Kn,p) ⊗ Qp/Zp.
The plus/minus Selmer groups defined in [7] are defined as Sel±p∞(E/Kn) but with

E±(Kn,p) ⊗ Qp/Zp replaced with Ê±(Kn,p) ⊗ Qp/Zp. By what we just explained

it follows that Sel±p∞(E/Kn) is identical to the Selmer group defined in [7].

We fix a modular parametrization π : X0(N) → E which maps the cusp ∞
of X0(N) to the origin of E (see [17] and [1]) We are assuming that every prime
dividing N splits in K/Q. It follows that we can choose an ideal N such that
OK/N ∼= Z/NZ. Let m be an integer that is relatively prime to N and let Om =
Z + mOK be the order of conductor m in K. The ideal Nm = N ∩ Om satisfies
Om/Nm ∼= Z/NZ and therefore the natural projection of complex tori:

C/Om → C/N−1
m

is a cyclic N -isogeny, which corresponds to a point of X0(N). Let α[m] be its image
under the modular parametrization π. From the theory of complex multiplication
we have that α[m] ∈ E(K[m]) where K[m] is the ring class field of K of conductor
m.

We are assuming that all the primes of K above p are totally ramified in K∞/K.
This implies that K∞/K and K[1]/K are linearly disjoint (K[1] is the Hilbert class
field of K). It follows from this that for any n ≥ 1 that K[pn+1] is the ring class field
of minimal conductor that contains Kn. For any n ≥ 0, we now define αn ∈ E(Kn)
to be the trace from K[pn+1] to Kn of α[pn+1].
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Under our assumption that p splits in K/Q, it follows from section 3.3 of [15]
that we have

TrK1/K(α1) = (ap − (ap − 2)−1(p− 1))α0 (1)

TrKn+1/Kn(αn+1) = apαn − αn−1 for n ≥ 1 (2)

Since E has supersingular reduction at p and p ≥ 5, ap = 0 so therefore we have

TrK1/K(α1) =
p− 1

2
α0 (3)

TrKn+1/Kn(αn+1) = −αn−1 for n ≥ 1 (4)

Recall that yK = TrK1/K(α[1]) (in the introduction α[1] was also denoted y1)
and α0 = TrK[p]/K(α[p]). From the relations in [15] section 3.3, we see that α0 =
(ap − 2)yK = −2yK . From this we see that if p does not divide yK in E(K), then
also p does not divide α0 in E(K).

Lemma 2.1. For any n ≥ 0 we have ω+
2nα2n = 0 and ω−2n+1α2n+1 = 0

Proof. From equation (4) above we have ω+
2nα2n = (γ−1)ω̃+

2nα2n = (γ−1)±α0 = 0.
A similar proof using also equation (3) shows that ω−2n+1α2n+1 = 0 �

We have the following important theorem

Theorem 2.2. For any n ≥ 0, the natural map

s±n : Sel±p∞(E/Kn)ω
±
n =0 → Sel±p∞(E/K∞)ω

±
n =0

is an isomorphism.

Proof. Note that we have assumed that p splits in K/Q and K∞/K is totally
ramified at any prime of K above p. These two assumptions allow us to use the
results of Iovita and Pollack [7].

By theorem 6.8 of [7] s±n is an injection with finite cokernel. The proof of this
result is based on the proof of [9] theorem 9.3. The proof reveals that the cokernel of
s±n will be trivial if for any prime v of Kn not dividing p the kernel of the restriction
map gn,v : H1(Kn,v, E)[p∞]→ ⊕w|vH1(K∞,w, E)[p∞] is trivial and this is the case
since p was assumed not to divide

∏
v|N cv (see the remark following [5] lemma

3.3). �

We end this section with the following proposition that will be used to invoke
Kolyvagin’s theorem (theorem 1.1)

Proposition 2.3. E[p] is an irreducible Gal(Q(E[p])/Q)-module

Proof. This is true since E has good supersingular reduction at p. See [8] prop 4.4
or [16] prop 12(c). �

3. Structure theorems for Selmer groups

Theorem 3.1. If yK /∈ pE(K), then both Sel+p∞(E/K∞) and Sel−p∞(E/K∞) are
cofree Λ-modules of rank one

Proof. Assume that yK /∈ pE(K). First consider the plus Selmer group. Let X be
the Pontryagin dual of Sel+p∞(E/K∞). It follows from [11] prop 4.7 that X is not
a torsion Λ-module.
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Now according to theorem 2.2 the map s+
0 : Selp∞(E/K) → Sel+p∞(E/K∞)Γ

is an isomorphism. Taking proposition 2.3 into account, theorem 1.1 gives that
Selp∞(E/K) ∼= Qp/Zp, therefore we see that X is a cyclic Λ-module i.e. X ∼= Λ/I
for some ideal I of Λ. But as X is not a torsion Λ-module, therefore I = 0 and X
is a free Λ-module of rank 1 as claimed. The proof for the minus Selmer group is
identical. �

Theorem 3.2. If for some prime p of K yK /∈ pE(Kp), then Selp∞(E/K∞) is a
cofree Λ-module of rank two

Proof. It is well-known that the analog of Mazur’s control theorem in the super-
singular case fails. We shall explain this and show that theorem 1.1 together with
the analysis of the cokernel of the restriction map between Selmer groups gives our
desired result.

Define S to be the set of primes of K dividing Np and S∞ to be the primes of
K∞ above those in S. Now define KS to be the maximal extension of K unramified
outside S, GS(K) = Gal(KS/K) and GS(K∞) = Gal(KS/K∞).

It is well-known that the p∞-Selmer group Selp∞(E/K) may be defined as

0 −→ Selp∞(E/K) −→ H1(GS(K), E[p∞]) −→
∏
v∈S

H1(Kv, E)[p∞]

We may also define Selp∞(E/K∞) as

0 −→ Selp∞(E/K∞) −→ H1(GS(K∞), E[p∞]) −→
∏
v∈S∞

H1(K∞,vE)[p∞]

Now consider the following commutative diagram

0 // Selp∞(E/K∞)Γ // H1(GS(K∞), E[p∞])Γ ψ∞
// (
⊕

v∈S∞
H1(K∞,v, E)[p∞])Γ

0 // Selp∞(E/K)

s

OO

// H1(GS(K), E[p∞])

h

OO

ψ
//
⊕
v∈S

H1(Kv, E)[p∞]

g

OO

(5)
Applying the snake lemma to the above diagram we get

0→ ker s→ kerh→ ker g ∩ imgψ → coker s→ cokerh

By [7] lemma 2.1 we have E(K∞)[p∞] = {0} and so the map h is an isomorphism.
Therefore from the above exact sequence we get that s is an injection and that
coker s = ker g ∩ imgψ.

We now analyze ker g. Let v be a prime of K that does not divide p and
consider the map gv : H1(Kv, E)[p∞] → (⊕w|vH1(K∞,w, E)[p∞])Γ where the sum
is taken over all primes w of K∞ above v. It can be shown by Shapiro’s lemma
along with the inflation restriction sequence that ker gv = H1(Γw, E) where Γw is
the decomposition group of Γ at a prime w of K∞ above v. It follows from [14]

proposition I-3.8 that H1(Γw, E) is finite of order c
(p)
v = pordp(cv). But by our

assumption p - cv and so therefore ker gv = 0.
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Now let v ∈ S∞ above p. Then since E has supersingular reduction at p and
K∞/K is ramified at v, therefore it follows from [2] cor. 3.2 (see [5] pg. 70) that
we have H1(K∞,v, E)[p∞] = {0}.

The two observations above imply that ker g = H1(Kp1
, E)[p∞] ×

H1(Kp2
, E)[p∞] where p1, p2 are the two primes of K above p. Therefore

coker s = imgψ ∩ H1(Kp1
, E)[p∞] × H1(Kp2

, E)[p∞]. Let ψ′ be the map ψ′ :
H1(GS(K), E[p∞])→

⊕
i=1,2

H1(Kpi , E)[p∞] so that coker s = imgψ′

We will show below that coker s = imgψ′ ∼= Qp/Zp. Let us explain how this
implies the desired result. Since Selp∞(E/K) ∼= Qp/Zp by Kolyvagin’s theorem
(theorem 1.1 taking prop 2.3 into account) and ker s = 0 therefore we get an exact
sequence

0→ Qp/Zp → Selp∞(E/K∞)Γ → Qp/Zp → 0

Let X = Selp∞(E/K∞)dual. Then taking the dual of the above sequence and
noting that Zp is a projective Zp-module we get XΓ = Zp × Zp. This implies by
Nakayama’s lemma that X is generated by two elements as a Λ-module and so
X ∼= Λ2/I for some Λ-submodule I of Λ2. If I 6= 0 then rankΛ(X) ≤ 1. This
contradicts theorem 1.7 of [5]. Therefore I = 0 and we get our desired result.

We study imgψ′ by using the Cassels-Poitou-Tate exact sequence (see [3]):

H1(GS(Kn), E[p∞])
ψ′−→

⊕
i=1,2

H1(Kpi , E)[p∞]
θ−→ Sp(E/K)dual

where Sp(E/K) = lim←−
n

Selpn(E/K)

We want to show that kerθ = imgψ′ ∼= Qp/Zp or equivalently coker θ̂ ∼= Zp
where θ̂ is the dual of θ

θ̂ : Sp(E/K)→
⊕
i=1,2

E(Kpi)⊗ Zp

where E(Kpi)⊗ Zp is the p-adic completion of E(Kpi).
By Mattuck’s theorem E(Kpi)

∼= Zp×T where T is a finite group. By [7] lemma
2.1 the order of T is not divisible by p. Therefore E(Kpi)⊗Zp ∼= Zp. Also theorem
1.1 implies that Sp(E/K) = E(K)⊗ Zp = Zp

Without loss of generality, we assume that yK is not divisible by p in E(Kp1
)

(it can be shown that this also implies that yK is not divisible by p in E(Kp2), but
we won’t need this). This implies that the restriction map from Sp(E/K) = Zp to

E(Kp1) ⊗ Zp = Zp is an isomorphism. So now we have a map θ̂ : Zp → Zp × Zp
such that if πi is the projection of the target group onto its i-th factor then π1 ◦ θ̂
is an isomorphism. We want to show that coker θ̂ ∼= Zp. Since θ̂ is not the zero

map, therefore to show this we only need to show that TorsZp(coker θ̂) = {0}.
Let (a, b) ∈ Zp × Zp such that (ra, rb) ∈ img θ̂ for some r ∈ Zp\{0}. We must

show that (a, b) ∈ img θ̂. Let x ∈ Zp be such that θ̂(x) = (ra, rb). Since π1 ◦ θ̂ is

surjective there exists y ∈ Zp such that θ̂(y) = (a, c) for some c ∈ Zp. Then we

have π1(θ̂(ry)) = rπ1(θ̂(y)) = ra = π1(θ̂(x)) which implies that ry = x since π1 ◦ θ̂
is injective. Therefore (ra, rc) = (ra, rb) so b = c showing that (a, b) ∈ img θ̂ as
desired. This completes the proof. �
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4. Proof of main theorem

Proposition 4.1. Let 0 ≤ k ≤ n and p be a prime of Kn above p. Let Hk be the
subgroup of E(Kn) generated by all the Galois conjugates of the Heegner point αk.
Consider the following Fp[Gn]-modules

(i) Hk/pHk
(ii) (Hk + pE(Kn))/pE(Kn)

(iii) (Hk + pE(Kn,p))/pE(Kn,p)

Let ε = + or − depending on whether k is even or odd, respectively and let ω̄εk be
the image of ωεk in Fp[X]. We have

(a) If yK /∈ pE(K), then the groups (i) and (ii) are cyclic Fp[Gn]-modules whose
annihilator ideal is generated by ω̄εk(γ − 1).

(b) If yK /∈ pE(Kp), then each of the groups (i), (ii) and (iii) is a cyclic Fp[Gn]-
module whose annihilator ideal is generated by ω̄εk(γ − 1).

Proof. We will prove part (b). The proof of part (a) is almost identical. Assume
that yK /∈ pE(Kp). Lemma 2.1 shows that ω̄εk annihilates each of the groups (i),
(ii) and (iii). Moreover, we have natural surjections

Hk/pHk � (Hk + pE(Kn))/pE(Kn) � (Hk + pE(Kn,p))/pE(Kn,p)

which proves the containment of the annihilators
AnnFp[Gn](Hk/pHk) ⊆ AnnFp[Gn]((Hk + pE(Kn))/pE(Kn)) ⊆ AnnFp[Gn]((Hk +

pE(Kn,p))/pE(Kn,p))
Therefore we only have to prove that AnnFp[Gn]((Hk + pE(Kn,p))/pE(Kn,p)) =

〈ω̄εk(γ − 1)〉. As explained above, we have the containment ⊇.

Note that for any m ≥ 1 we have Xpm − 1 ≡ (X − 1)p
m

mod p. From this
it follows that ω̄εk = Xqk . Now Fp[X]/〈Xpn〉 is isomorphic to Fp[Gn] where the
isomorphism is induced by the map taking X to γ − 1.

Now assume that AnnFp[Gn]((Hk + pE(Kn,p))/pE(Kn,p)) is strictly larger than

〈ω̄εk(γ − 1)〉. As Fp[Gn] is isomorphic to Fp[X]/〈Xpn〉 and Fp[X] is a PID, we see
this implies that AnnFp[Gn]((Hk + pE(Kn,p))/pE(Kn,p)) = 〈(γ− 1)t〉 where t < qk.

Therefore (γ−1)qk−1 annihilates αk+pE(Kn,p). But ¯̃ωεk = Xqk−1. So from the trace
relations (3) and (4) we see that (γ − 1)qk−1(αk + pE(Kn,p)) = cα0 + pE(Kn,p) =
−2cyK + pE(Kn,p) for some c ∈ F×p . So we see that yK ∈ pE(Kn,p) i.e. yK = pP
for some P ∈ E(Kn,p).

Then 0 = (γ − 1)yK = (γ − 1)pP = p(γ − 1)P . Since E(Kn,p)[p∞]Γ =
E(Kp)[p∞] = {0} by [7] lemma 2.1, therefore E(Kn,p)[p∞] = {0}. So (γ − 1)P = 0
i.e. P ∈ E(Kp). So yK ∈ pE(Kp) a contradiction. �

We now have the following important result

Theorem 4.2. If yK /∈ pE(K), then for any n ≥ 0 the subgroup H(Kn) of E(Kn)
generated by all the Galois conjugates of the Heegner points αm for m ≤ n has rank
pn

Proof. For n = 0 this is theorem 1.1, so assume that n ≥ 1. Let ε be + or −
depending on whether n is even or odd, respectively. Let H(Kn)ε be the subgroup
of H(Kn) generated by the Galois conjugates of αn and H(Kn)−ε be the subgroup
generated by the Galois conjugates of αn−1.
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By [7] lemma 2.1 E(Kn)[p∞] = {0} so rankZ(H(Kn)ε) =
dimFp(H(Kn)ε/pH(Kn)ε) and by proposition 4.1(a)(i) we have

dimFp(H(Kn)ε/pH(Kn)ε) = dimFp(Fp[Gn]/〈ω̄εn(γ−1))〉 = dimFp(Fp[X]/〈ω̄εn〉) = degωεn = qn

So rankZ(H(Kn)ε) = qn and similarly rankZ(H(Kn)−ε) = qn−1

When n = 1 it is easy to see from the trace relation on the Heegner points (3)
that rankZ(H(K1)) = rankZ(H(K1)ε) and by the above the latter is equal to q1 = p.
This proves the result for n = 1. Now assume that n > 1. Then by the trace relation
on the Heegner points (4) it is easy to see that H(Kn) = H(Kn)ε +H(Kn)−ε.

Now let Hn be the subgroup of E(Kn)⊗Qp/Zp generated by H(Kn) and H±εn be
the subgroup of E(Kn)⊗Qp/Zp generated by H(Kn)±ε. Then we have Hn = Hε

n+
H−εn . Also rankZ(H(Kn)) = corankZp(Hn) and rankZ(H(Kn)±ε) = corankZp(H±εn )

From the above we see that

rankZ(H(Kn)) = corankZp(Hn)

= corankZp(Hε
n +H−εn )

= corankZp(Hε
n) + corankZp(H−εn )− corankZp(Hε

n ∩H−εn )

= qn + qn−1 − corankZp(Hε
n ∩H−εn )

= pn + 1− corankZp(Hε
n ∩H−εn )

Therefore we see that to prove the theorem we need to show that corankZp(Hε
n∩

H−εn ) = 1. We have Zα0⊗Qp/Zp ⊆ Hε
n∩H−εn and α0 has infinite order by Kolyva-

gin’s theorem. This implies that corank(Hε
n ∩ H−εn ) ≥ 1. Therefore we need to

show that corankZp(Hε
n ∩ H−εn ) ≤ 1. To show this, note that the trace relation

(4) and lemma 2.1 imply that Hε
n ⊆ Selεp∞(E/Kn)ω

ε
n=0. Since Sel+p∞(E/Kn) ∩

Sel−p∞(E/Kn) = Sel1p∞(E/Kn) by [7] lemma 7.4(3), therefore Hε
n ∩ H−εn ⊆

Sel1p∞(E/Kn)ω
±
n =0. So it suffices to show that corankZp(Sel1p∞(E/Kn)ω

±
n =0) ≤ 1.

Now X is a greatest common divisor of ω+
n (X) and ω−n (X) in Qp[X].

It follows that there exist polynomials A(X), B(X) ∈ Zp[X] such that
A(X)ω+

n (X) + B(X)ω−n (X) = pmX for some integer m. This shows

that Sel1p∞(E/Kn)ω
±
n =0 ⊆ Sel1p∞(E/Kn)p

m(γ−1)=0 (Sel1p∞(E/Kn)p
m(γ−1)=0

means the subgroup of Sel1p∞(E/Kn) annihilated by pm(γ − 1)). There-

fore it suffices to show that corankZp(Sel1p∞(E/Kn)p
m(γ−1)=0) ≤ 1. As

pm Sel1p∞(E/Kn)p
m(γ−1)=0 ⊆ Sel1p∞(E/Kn)Γ and Sel1p∞(E/Kn)[pm] ⊆

Selp∞(E/Kn)[pm] is finite, corankZp(Sel1p∞(E/Kn)p
m(γ−1)=0) ≤ 1 will follow

if we can show that corankZp(Sel1p∞(E/Kn)Γ) ≤ 1. The next lemma shows that

Sel1p∞(E/Kn)Γ is isomorphic to Sel1p∞(E/K). Since Sel1p∞(E/K) ⊆ Selp∞(E/K)
and corankZp(Selp∞(E/K)) = 1 by theorem 1.1 the result follows. �

Lemma 4.3. For any n ≥ 0, the restriction map induces an isomorphism
Sel1p∞(E/K) ∼= Sel1p∞(E/Kn)Γn

Proof. Define S to be the set of primes of K dividing Np and Sn to be the primes of
Kn above those in S. Now define KS to be the maximal extension of K unramified
outside S, GS(K) = Gal(KS/K) and GS(Kn) = Gal(KS/Kn). Let p1 and p2 be the
primes of Kn above p. We define Pp(E/Kn) =

∏
i=1,2(H1(Kn,pi , E[p∞])/(E(Qp)⊗

Qp/Zp)) and P∗(E/Kn) =
∏
v∈Sn\{p1,p2}H

1(Kn,v, E)[p∞]. Similarly we define

Pp(E/K) and P∗(E/K).
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We have a commutative diagram

0 // Sel1p∞(E/Kn)Γn // H1(GS(Kn), E[p∞])Γn // Pp(E/Kn)Γn × P∗(E/Kn)Γn

0 // Sel1p∞(E/K)

s

OO

// H1(GS(K), E[p∞])

h

OO

ψ
// Pp(E/K)× P∗(E/K)

g

OO

(6)
Applying the snake lemma to the above diagram we get

0→ ker s→ kerh→ ker g ∩ imgψ → coker s→ cokerh

By [7] lemma 2.1 we have E(K∞)[p∞] = {0} and so the map h is an isomorphism.
Therefore from the above exact sequence we get that s is an injection and that
coker s = ker g ∩ imgψ. So to complete the proof of the lemma it will suffice to
show that ker g = 0.

Let v be a prime of K that does not divide p and consider the map gv :
H1(Kv, E)[p∞]→ (⊕w|vH1(Kn,w, E)[p∞])Γ where the sum is taken over all primes
w of Kn above v. It can be shown by Shapiro’s lemma along with the inflation re-
striction sequence that ker gv = H1(Γw, E) where Γw is the decomposition group of
Γ at a prime w of Kn above v. It follows from [14] proposition I-3.8 that H1(Γw, E)

is finite of order c
(p)
v = pordp(cv). But by our assumption p - cv and so therefore

ker gv = 0.
We therefore see that to show that ker g = 0 we only need to show that the

restriction map

gp :
H1(Kp, E[p∞])

E(Qp)⊗Qp/Zp
→
(H1(Kn,p, E[p∞])

E(Qp)⊗Qp/Zp

)Γn

is injective where p is a prime of Kn above p
To prove this, consider the following commutative diagram

0 // (E(Qp)⊗Qp/Zp)Γn // H1(Kn,p, E[p∞])Γn //

(
H1(Kn,p,E[p∞])
E(Qp)⊗Qp/Zp

)Γn

0 // E(Qp)⊗Qp/Zp

g′p

OO

// H1(Kp, E[p∞])

g′′p

OO

// H
1(Kn,p,E[p∞])
E(Qp)⊗Qp/Zp

gp

OO

// 0

(7)
Applying the snake lemma to the above diagram we see that to show ker gp = 0,
we only need to show that ker g′′p = 0 and coker g′p = 0. Now g′p is an isomorphism

so coker g′p = 0. As for ker g′′p we have ker g′′p = H1(Gal(Kn,p/Kp), E(Kn,p)[p∞]).

By [7] lemma 2.1 E(Kn,p)[p∞]Γn = E(Kp)[p∞] = {0} so E(Kn,p)[p∞] = {0}. This
shows that ker g′′p = 0 which completes the proof.

�

Let j : Sel+p∞(E/Kn) ⊕ Sel−p∞(E/Kn) → Selp∞(E/Kn) be the diagonal map
(x, y) 7→ x− y
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Proposition 4.4. For any n ≥ 0 we have an exact sequence

0 −→ K −→ Sel+p∞(E/Kn)ω
+
n=0⊕Sel−p∞(E/Kn)ω

−
n =0 j−−→ Selp∞(E/Kn) −→ C −→ 0

where K = Sel1p∞(E/Kn)ω
±
n =0 and C is finite

Proof. This is essentially proposition 10.1 of Kobayashi’s paper [9]. Given P ∈
Selp∞(E/Kn)div Kobayashi finds P+ ∈ Sel+p∞(E/Kn) and P− ∈ Sel−p∞(E/Kn)

such that j(P+, P−) = P . We only need to show that ω+
n P

+ = 0 and ω−n P
− = 0.

For a suitably chosen Q ∈ Selp∞(E/Kn), A,B ∈ Zp[X] Kobayashi defines P+ =

A(γ− 1)ω̃−nQ and P− = B(γ− 1)ω+
nQ. Since ω+

n ω̃
−
n = γp

n − 1 and (γp
n − 1)Q = 0

therefore we see that ω+
n P

+ = 0. Similarly one shows that ω−n P
− = 0. �

Theorem 4.5. If yK /∈ pE(K), then for any n ≥ 0 rank(E(Kn)) = pn and
X(E/Kn)[p∞] is finite

Proof. By theorem 3.1 together with theorem 2.2, we have

corankZp(Sel+p∞(E/Kn)ω
+
n=0⊕Sel−p∞(E/Kn)ω

−
n =0) = corankZp(Λ/ω+

n Λ⊕Λ/ω−n Λ) =

degω+
n + degω−n = qn + qn−1 = pn + 1

The exact sequence in the previous proposition together with this shows that

corankZp(Selp∞(E/Kn)) = pn + 1 − corankZp(Sel1p∞(E/Kn)ω
±
n =0). But E(K) ⊗

Qp/Zp ⊆ Sel1p∞(E/Kn)ω
±
n =0 and since E(K) has rank one by theorem 1.1, there-

fore we see that corankZp(Sel1p∞(E/Kn)ω
±
n =0) ≥ 1. So corankZp(Selp∞(E/Kn)) ≤

pn. Theorem 4.2 implies that rank(E(Kn)) ≥ pn. But rank(E(Kn)) =
corankZp(E(Kn) ⊗ Qp/Zp) ≤ corankZp(Selp∞(E/Kn)). So we get rank(E(Kn)) =
corankZp(Selp∞(E/Kn)) = pn. This last equality implies that X(E/Kn)[p∞] is
finite.

�

In our main theorem we need to show that X(E/Kn)[p∞] = 0 for all n ≥ 0
when yK /∈ pE(Kp) where p is some prime of K above p. The first step towards
proving this is the following

Proposition 4.6. If for some prime p of K above p yK /∈ pE(Kp), then
X(E/K∞)[p∞] = 0

Proof. It follows from [4] lemma 2.6.5 that corankΛ(E(K∞) ⊗ Qp/Zp) ≥ 2. We
have an exact sequence

0 −→ E(K∞)⊗Qp/Zp −→ Selp∞(E/K∞) −→X(E/K∞)[p∞] −→ 0

Let X be the Pontryagin dual of X(E/K∞)[p∞]. The above exact se-
quence together with the fact that corankΛ(E(K∞) ⊗ Qp/Zp) ≥ 2 and
corankΛ(Selp∞(E/K∞)) = 2 (theorem 3.2) implies that X is a torsion Λ-module.
But X injects into the Pontryagin dual of Selp∞(E/K∞) which is a free Λ-module
(theorem 3.2). It follows that X = 0 i.e. X(E/K∞)[p∞] = 0 as desired. �

We also need the following

Proposition 4.7. If for some prime p of K∞ above p yK /∈ pE(Kp), then for any
n ≥ 0 the localization map θn,p : E(Kn)⊗ Fp → E(Kn,p)⊗ Fp is an isomorphism
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Proof. For any n ≥ 0 theorem 4.5 gives rank(E(Kn)) = pn so dimFp(E(Kn)⊗Fp) =

pn. Also by Mattuck’s theorem E(Kn,p) ∼= Zpnp × T where T is a finite group. [7]
lemma 2.1 implies that the order of T is prime to p, therefore dimFp(E(Kn,p) ⊗
Fp) = pn. Thus to show that θn,p is an isomorphism it suffices to show that
dimFp(img θn,p) ≥ pn which we now show.

Since yK is not divisible by p in E(Kp) this implies that dimFp(img θ0,p) ≥ 1
which proves the result for n = 0. Now assume n ≥ 1. Now let ε be + or −
depending on whether n is even or odd, respectively. Let H(Kn)ε be the subgroup
of E(Kn) generated by the Galois conjugates of αn and H(Kn)−ε be the sub-
group generated by the Galois conjugates of αn−1. To simplify notation we denote
(H(Kn)±ε + pE(Kn))/pE(Kn) by H(Kn)±ε and in turn denote θn,p(H(Kn)±ε) by

H(Kn,p)±ε

By proposition 4.1(b)(iii) we have

dimFp(H(Kn,p)ε) = dimFp(Fp[Gn]/〈ω̄εn(γ−1))〉 = dimFp(Fp[X]/〈ω̄εn〉) = degωεn = qn

and similarly dimFp(H(Kn,p)−ε) = qn−1

Since q1 = p the above implies that dimFp(img θ1,p) ≥ p as desired. So now
assume that n > 1. Then we have

dimFp(H(Kn,p)ε +H(Kn,p)−ε) = dimFp(H(Kn,p)ε) + dimFp(H(Kn,p)−ε)− dimFp(H(Kn,p)ε ∩H(Kn,p)−ε)

= qn + qn−1 − dimFp(H(Kn,p)ε ∩H(Kn,p)−ε)

= pn + 1− dimFp(H(Kn,p)ε ∩H(Kn,p)−ε)

From this we see that to show that dimFp(img θn,p) ≥ pn we only have to show

that dimFp(H(Kn,p)ε ∩H(Kn,p)−ε) ≤ 1
The trace relation (4) implies that

H(Kn,p)±ε ⊆ (E(Kn,p)±ε + pE(Kn,p))/pE(Kn,p)

. Therefore we only have to show that

dimFp((E(Kn,p)+ + pE(Kn,p))/pE(Kn,p)∩ (E(Kn,p)−+ pE(Kn,p))/pE(Kn,p)) ≤ 1

By a proof identical to [4] lemma 2.6.5 using the results of Iovita and Pollack [7]
we have

(E(Kn,p)++pE(Kn,p))/pE(Kn,p)∩(E(Kn,p)−+pE(Kn,p))/pE(Kn,p) = (E(Qp)+pE(Kn,p))/pE(Kn,p)

By Mattuck’s theorem E(Qp) ∼= Zp×T where T is a finite group. [7] lemma 2.1
implies that the order of T is prime to p. It follows from this that

dimFp((E(Qp) + pE(Kn,p))/pE(Kn,p)) ≤ 1

This completes the proof. �

Theorem 4.8. If for some prime p of K above p yK /∈ pE(Kp), then
X(E/Kn)[p∞] = 0 for all n ≥ 0

Proof. Let n ≥ 0. By proposition 4.6 X(E/K∞)[p] = 0 so we need to show that the
restriction map resn : X(E/Kn)[p] → (X(E/K∞)[p])Γn is an injection. Consider
the following commutative diagram
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0 // (E(K∞)⊗ Fp)Γn
κ∞

// Selp(E/K∞)Γn // (X(E/K∞)[p])Γn

0 // E(Kn)⊗ Fp

res′′n

OO

κn
// Selp(E/Kn)

res′n

OO

//X(E/Kn)[p]

resn

OO

// 0

(8)
By [7] lemma 2.1 E(K∞)[p∞] = 0. This implies that that the restriction map
res′n : Selp(E/Kn)→ Selp(E/K∞)Γn is an injection. Therefore applying the snake
lemma to the above diagram we see that to show that resn is an injection we need
to show that

κ̄∞ :
(E(K∞)⊗ Fp)Γn

res′′n(E(Kn)⊗ Fp)
→ Selp(E/K∞)Γn

res′n(Selp(E/Kn))

is an injection
Let x ∈ (E(K∞) ⊗ Fp)Γn and assume that κ∞(x) = res′n(s) for some s ∈

Selp(E/Kn). We must show that x ∈ img res′′n
We will also denote the prime of K∞ above p by p. Let φn,p : H1(Kn, E[p]) →

H1(Kn,p, E[p]) and φ∞,p : H1(K∞, E[p]) → H1(K∞,p, E[p]) be the restriction
maps. Also let κn,p : E(Kn,p)⊗ Fp → H1(Kn,p, E[p]) and κ∞,p : E(K∞,p)⊗ Fp →
H1(K∞,p, E[p]) be the Kummer maps. By definition, if s ∈ Selp(E/Kn) then
φn,p(s) ∈ img κn,p and if s ∈ Selp(E/K∞) then φ∞,p(s) ∈ img κ∞,p

Now let resn,p : H1(Kn,p, E[p])→ H1(K∞,p, E[p])Γn and resn,p : E(Kn,p)⊗Fp →
(E(K∞,p) ⊗ Fp)Γn be the local restriction maps. Also let θn,p : E(Kn) ⊗ Fp →
E(Kn,p) ⊗ Fp and θ∞,p : E(K∞) ⊗ Fp → E(K∞,p) ⊗ Fp be the localization maps.
Both maps are isomorphisms by proposition 4.7.

Now we have

κ∞,p(θ∞,p(x)) = φ∞,p(κ∞(x)) = φ∞,p(res′n(s)) = resn,p(φn,p(s)) (9)

As mentioned above, we have φn,p(s) = κn,p(yp) for some yp ∈ E(Kn,p) ⊗ Fp.
Therefore from (9) we get

κ∞,p(θ∞,p(x)) = resn,p(φn,p(s)) = resn,p(κn,p(yp)) = κ∞,p(resn,p(yp)) (10)

But θn,p is an isomorphism so yp = θn,p(y) for some y ∈ E(Kn) ⊗ Fp. So from
equation (10) we get

κ∞,p(θ∞,p(x)) = κ∞,p(resn,p(yp)) = κ∞,p(resn,p(θn,p(y))) = κ∞,p(θ∞,p(res′′n(y)))

But κ∞,p and θ∞,p are both injections so the above equation gives x = res′′n(y).
This proves the theorem. �

Our main theorem is now proven

Theorem 4.9. Assume that (E, p) satisfies (?) and yK /∈ pE(K). Then we have

(i) rank(E(Kn)) = pn for all n ≥ 0
(ii) X(E/Kn)[p∞] is trivial for n = 0 and finite for all n > 0

If furthermore for some prime p of K over p we have yK /∈ pE(Kp), then

(i) Selp∞(E/K∞)dual is a free Λ-module of rank two
(ii) X(E/Kn)[p∞] = 0 for all n ≥ 0.

Proof. This follows from theorems 1.1, 3.2, 4.5 and 4.8. �
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